Какой диапазон частот у светового излучения. Сказ о том как спектральные характеристики освещения влияют на нашу жизнь

> Видимый свет

Узнайте определение и характеристику видимого света : длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

> Видимый свет

Видимый свет – часть электромагнитного спектра, доступная для восприятия человеческому глазу (390-750 нм).

Задача обучения

  • Научиться отличать 6 диапазонов видимого спектра.

Основные пункты

  • Видимый свет формируется из-за вибраций и вращений атомов и молекул, а также электронных транспортировок внутри них.
  • Цвета отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – самые высокие частоты и кратчайшие длины.
  • Цвета, созданные в видимом свете узкой полосы длин волн, именуют чистыми спектральными цветами: фиолетовый (380-450 нм), синий (450-495 нм), зеленый (495-570 нм), желтый (570-590 нм), оранжевый (590-620 нм) и красный (620-750 нм).
  • Видимый свет прорывается сквозь оптическое стекло, поэтому атмосферный слой не оказывает значительного сопротивления.
  • Часть электромагнитного спектра, используемая в фотосинтезирующих организмах, именуется фотосинтетически активной областью (400-700 нм).

Термины

  • Оптическое окно – видимый участок в электромагнитном спектре, проходящая сквозь атмосферный слой.
  • Спектральный цвет – создается одной длиной волны света в видимом спектре или относительно узкой полосой длин волн.
  • Видимый свет – часть электромагнитного спектра (между ИК и УФ), доступная человеческому глазу.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

В 1676 году сэр Исаак Ньютон с помощью трёхгранной призмы разложил белый солнечный свет на цветовой спектр. Подобный спектр содержал все цвета за исключением пурпурного. Ньютон ставил свой опыт следующим образом:

солнечный свет пропускался через узкую щель и падал на призму. В призме луч белого цвета расслаивался на отдельные спектральные цвета. Разложенный таким образом он направлялся затем на экран, где возникало изображение спектра. Непрерывная цветная лента начиналась с красного цвета и через оранжевый, жёлтый, зелёный, синий кончалась фиолетовым. Если это изображение затем пропускалось через собирающую линзу, то соединение всех цветов вновь давало белый цвет . Эти цвета получаются из солнечного луча с помощью преломления. Существуют и другие физические пути образования цвета, например, связанные с процессами интерференции, дифракции, поляризации и флуоресценции.

Если мы разделим спектр на две части, например - на красно-оранжево-жёлтую и зелёно-сине-фиолетовую, и соберём каждую из этих групп специальной линзой, то в результате получим два смешанных цвета, смесь которых в свою очередь также даст нам белый цвет. Два цвета, объединение которых даёт белый цвет, называются дополнительными цветами. Если мы удалим из спектра один цвет, например, зелёный, и посредством линзы соберём оставшиеся цвета - красный, оранжевый, жёлтый, синий и фиолетовый, - то полученный нами смешанный цвет окажется красным, то есть цветом дополнительным по отношению к удалённому нами зелёному. Если мы удалим жёлтый цвет, - то оставшиеся цвета - красный, оранжевый, зелёный, синий и фиолетовый - дадут нам фиолетовый цвет, то есть цвет, дополнительный к жёлтому.

Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра. В смешанном цвете мы не можем увидеть отдельные его составляющие. В этом отношении глаз отличается от музыкального уха, которое может выделить любой из звуков аккорда. Различные цвета создаются световыми волнами, которые представляют собой определённый род электромагнитной энергии.

1 микрон или 1 т = 1/1000 мм = 1/1 000000 м. 1 миллимикрон или 1 мт = 1/1 000 000 мм.

Длина волн, соответствующая отдельным цветам спектра, и соответствующие частоты (число колебаний в секунду) для каждого призматического цвета имеют следующие характеристики:

Отношение частот красного и фиолетового цвета приблизительно равно 1:2, то есть такое же как в музыкальной октаве.

Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознаёт эти волны до настоящего времени ещё полностью не известно. Мы только знаем, что различные цвета возникают в результате количественных различий светочувствительности.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный - пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света - там мрак, там всё становится черным. Пример тому - иллюстрация 4.


Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.



Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.


Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии - нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный - алый - бордовый - бурый - черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».


Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный - малиновый - розовый - бледно-розовый - белый.


Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.


Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.


Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% - это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) - это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 - это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства , по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет . А когда объект отражает почти весь падающий свет, он принимает белый цвет . Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света , которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря - физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

- Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

- Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

- И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).


Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.


Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.


Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета -

  • Глава 01. Физика цвета
  • Глава 02. Цвет и цветовое воздействие
  • Глава 03. Цветовая гармония
  • Глава 04. Субъективное отношение к цвету
  • Глава 05. Цветовое конструирование
  • Глава 06. Двенадцатичастный цветовой круг
  • Глава 07. Семь типов цветовых контрастов
  • Глава 08. Контраст по цвету
  • Глава 09. Контраст светлого и темного
  • Глава 10. Контраст холодного и теплого
  • Глава 11. Контраст дополнительных цветов
  • Глава 12. Симультанный контраст
  • Глава 13. Контраст по насыщенности
  • Глава 14. Контраст по площади цветовых пятен
  • Глава 15. Смешение цветов
  • Глава 16.
  • Глава 17. Цветовые созвучия
  • Глава 18. Форма и цвет
  • Глава 19. Пространственное воздействие цвета
  • Глава 20. Теория цветовых впечатлений
  • Глава 21. Теория цветовой выразительности
  • Глава 22. Композиция
  • Послесловие
  • Физика цвета

    В 1676 году сэр Исаак Ньютон с помощью трехгранной призмы разложил белый солнечный свет на цветовой спектр. Подобный спектр содержал все цвета за исключением пурпурного.

    Ньютон ставил свой опыт следующим образом (рис. 1) солнечный свет пропускался через узкую щель и падал на призму. В призме луч белого цвета расслаивался на отдельные спектральные цвета. Разложенный таким образом он направлялся затем на экран, где возникало изображение спектра. Непрерывная цветная лента начиналась с красного цвета и через оранжевый, желтый, зеленый, синий кончалась фиолетовым. Если это изображение затем пропускалось через собирающую линзу, то соединение всех цветов вновь давало белый цвет.

    Эти цвета получаются из солнечного луча с помощью преломления. Существуют и другие физические пути образования цвета, например, связанные с процессами интерференции, дифракции, поляризации и флуоресценции.

    Если мы разделим спектр на две части, например - на красно-оранжево-желтую и зелено-сине-фиолетовую, и соберем каждую из этих групп специальной линзой, то в результате получим два смешанных цвета, смесь которых в свою очередь также даст нам белый цвет.

    Два цвета, объединение которых дает белый цвет, называются дополнительными цветами.

    Если мы удалим из спектра один цвет, например, зеленый, и посредством линзы соберем оставшиеся цвета - красный, оранжевый, желтый, синий и фиолетовый, - то полученный нами смешанный цвет окажется красным, то есть цветом дополнительным по отношению к удаленному нами зеленому. Если мы удалим желтый цвет , то оставшиеся цвета - красный, оранжевый, зеленый, синий и фиолетовый - дадут нам фиолетовый цвет, то есть цвет, дополнительный к желтому.

    Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра.

    В смешанном цвете мы не можем увидеть отдельные его составляющие. В этом отношении глаз отличается от музыкального уха, которое может выделить любой из звуков аккорда.

    Различные цвета создаются световыми волнами, которые представляют собой определенный род электромагнитной энергии.

    Человеческий глаз может воспринимать свет только при длине волн от 400 до 700 миллимикрон:

    • 1 микрон или 1μ = 1/1000 мм = 1/1000000 м.
    • 1 миллимикрон или 1mμ = 1/1000000 мм.

    Длина волн, соответствующая отдельным цветам спектра, и соответствующие частоты (число колебаний в секунду) для каждого спектрального цвета имеют следующие характеристики:

    Отношение частот красного и фиолетового цвета приблизительно равно 1:2, то есть такое же как в музыкальной октаве.

    Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознает эти волны до настоящего времени еще полностью неизвестно. Мы только знаем, что различные цвета возникают в результате количественных различий светочувствительности.

    Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, пропускающий красный цвет, и фильтр, пропускающий зеленый, перед дуговой лампой, то оба фильтра вместе дадут черный цвет или темноту. Красный цвет поглощает все лучи спектра, кроме лучей в том интервале, который отвечает красному цвету, а зеленый фильтр задерживает все цвета, кроме зеленого. Таким образом, не пропускается ни один луч, и мы получаем темноту. Поглощаемые в физическом эксперименте цвета называются также вычитаемыми.

    Цвет предметов возникает, главным образом, в процессе поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный.

    Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхности чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении.

    Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зеленым светом, то бумага покажется нам черной, потому что зеленый цвет не содержит лучей, отвечающих красному цвету, которые могли быть отражены нашей бумагой.

    Все живописные краски являются пигментными или вещественными. Это впитывающие (поглощающие) краски, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета - желтый, красный и синий, - смешиваются в определенной пропорции, то результатом будет черный, в то время как аналогичная смесь невещественных цветов, полученных в ньютоновском эксперименте с призмой, дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычитания.

    1. ОСОБЕННОСТИ ЦВЕТОВОСПРИЯТИЯ.

    Сейчас известно, что цвет - это представление человека о видимой части спектра электромагнитного излучения. Свет воспринимается фоторецепторами, расположенными в задней части зрачка. Эти рецепторы преобразуют энергию электромагнитного излучения в электрические сигналы. Рецепторы сконцентрированы большей частью в ограниченной области сетчатки или ретины, которая называется ямкой. Эта часть сетчатки способна воспринимать детали изображения и цвет гораздо лучше, чем остальная ее часть. С помощью глазных мускул ямка смещается так, чтобы воспринимать разные участки окружающей среды. Обзорное поле, в котором хорошо различаются детали и цвет ограничено приблизительно 2-мя градусами.
    Существует два типа рецепторов: палочки и колбочки. Палочки активны только при крайне низкой освещенности (ночное зрение) и не имеют практического значения при восприятии цветных изображений ; они более сконцентрированы по периферии обзорного поля. Колбочки ответственны за восприятие цвета и они сконцентрированы в ямке. Существует три типа колбочек, которые воспринимают длинные, средние и короткие длины волн светового излучения.

    Каждый тип колбочек обладает собственной спектральной чувствительностью. Приблизительно считается, что первый тип воспринимает световые волны с длиной от 400 до 500 нм (условно "синюю " составляющую цвета ), второй - от 500 до 600 нм (условно "зеленую " составляющую) и третий - от 600 до 700 нм (условно "красную " составляющую). Цвет ощущается в зависимости от того, волны какой длины и интенсивности присутствуют в свете.

    Глаз наиболее чувствителен к зеленым лучам, наименее - к синим . Экспериментально установлено, что среди излучений равной мощности наибольшее световое ощущение вызывает монохроматическое желто-зеленое излучение с длиной волны 555 нм. Спектральная чувствительность глаза зависит от внешней освещенности. В сумерках максимум спектральной световой эффективности сдвигается в сторону синих излучений , что вызвано разной спектральной чувствительностью палочек и колбочек. В темноте синий цвет оказывает большее влияние, чем красный , при равной мощности излучения, а на свету - наоборот.

    Разные люди воспринимают один и тот же цвет по-разному. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от настроения и других факторов. Однако, такие различия относятся в основном к тонким оттенкам цвета , поэтому в целом можно утверждать, что большинство людей воспринимает основные цвета одинаково.

    2. ЧТО ЕСТЬ ЦВЕТ?

    Что такое цвет ? Физика рассматривает свет как электромагнитную волну. Волна - это просто изменение состояния среды или поля, распространяющееся в пространстве с какай-то скоростью. У любой волны есть длина - это расстояние между гребнями волны.

    Те длины волн, которые способен воспринимать человеческий глаз носит название видимого света. Например, свет с наибольшей длиной волны мы воспринимаем как красный, а с наименьшей - как фиолетовый. При этом стоит отметить, что наше ухо тоже воспринимает волны, только очень большой длины волны и несколько другой природы. Звук - это колебания вещества. Например в вакууме нет частичек вещества (воздуха например). И там нет звука, звуковая волна не распространяется в вакууме.

    Единицей измерения длины волны оптической области спектра излучений является нанометр (нм);

    1 нм = 1 х 10 -3 мк (микрон) = 1 х 10 -6 мм (миллиметров).

    Цвета , которые мы воспринимаем, различаются в зависимости от длины волны видимого света:

    Цвет

    Длина волны, нм

    Красный

    от 620 до 760

    Оранжевый

    от 585 до 620

    Желтый

    от 575 до 585

    Зеленый

    от 510 до 575

    Голубой

    от 480 до 510

    Синий

    от 450 до 480

    Фиолетовый

    от 380 до 450

    Порядок расположения цветов просто запомнить по аббревиатуре слов: каждый охотник желает знать, где сидит фазан .

    Резкой границы между цветами нет, но среди приведенных выше цветов отсутствует белый ...
    Всё дело в том, что никакой определенной длины волны белому свету не соответствует. Тем не менее, границы диапазонов белого света и составляющих его цветов принято характеризовать их длинами волн в вакууме. Таким образом, белый свет - это сложный свет, совокупность волн длинами от 380 до 760 нм.

    Причина, по которой человек способен видеть свет заключается в воздействии света определенных длин волн на глазную сетчатку.

    При прохождении света через вещество, имеющее преломляющий угол, происходит разложение света на сотавляющие его цвета, при этом изменяются и скорость, и длина волны, а частота колебаний света остается неизменной.

    Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет ), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз ). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз ).

    Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн. Тем не менее мы можем воспринимать огромный диапазон различных цветов (диапазон волн).

    3. ЦВЕТОВАЯ ГАРМОНИЯ.

    В теории цвета цветовой круг содержит в себе все цвета , видимые человеком, от фиолетового до красного. Цветовой круг показывает, как цвета связаны между собой, и позволяет определять по определенным правилам гармоничные сочетания этих цветов.

    Черный, белый и серый не обозначены на цветовом круге, так как, строго говоря, они не являются цветами. Это нейтральные тона .

    3.1. Цветовые сочетания.

    В цветовых схемах приведены гармоничные сочетание цветов. Заметьте, что цвета можно и нужно варьировать по насыщенности и светлоте (яркости) . И кстати, часто встречающаяся еще одна гармония : по насыщенности. На картинке представлены возможные варианты цветовой гармонии .


    Не применяйте цвета в равных количествах. Сделайте лучше один цвет фоном , а другой пусть будет просто акцентом на нем. Интересно, что дополнительные цвета при смешении дают серый цвет (три основных цвета , кстати, тоже). Поэтому, если вы примените их рядом и в больших количествах, то в глазах зрителя будет происходить смешение до серого!

    Вы можете поэксперементироватьь над этим, используя инструмент подбора цветов .

    4. ОЩУЩЕНИЕ ГЛУБИНЫ.

    Важную роль в создании цветовой композиции играет разделение цветов на теплые и холодные . Это разделение легко заметить на цветовом круге (см. рисунки выше). На этом круге выделяется "теплая" красно-желтая область и "холодная" синяя область , разделенная вертикальной линией. Это разделение трудно объяснить на уровне физики - разделение на "два лагеря" происходит, скорее, на уровне подсознания.

    С детства мы привыкли, что солнце, огонь, углы и все источники тепла имеют красно-желтые оттенки , а снег, вода, небо - сине-голубые и сине-зеленые оттенки . Это закрепляется у нас в подсознании, и диктует нам восприятие цвета . Но есть также "нарушители" этого разбиения. Так, светло-бежевая луна, бордовые цвета являются холодными цветами, а светло-голубое свечение нагретых тел имеет теплый цвет .

    Яркие, теплые тона создают эффект движения в сторону смотрящего и кажутся ближе. Теплые цвета привлекают внимание и хорошо подходят для выделения важных элементов публикации.

    Холодные цвета кажутся удаляющимися и создают эффект движения в сторону от смотрящего. В комбинации, холодные цвета могут вызвать ощущение отчужденности и изоляции, а может, наоборот, быть успокаивающим и ободряющим.

    Эффект движения, вызванный сочетанием теплых и холодных цветов , используется дизайнерами. Для фона ими выбирается холодные оттенки , а для объектов на переднем плане - теплые . Так, если Вы посмотрите на фотографии , сделанные на презентациях и пресс-конференциях, Вы увидите докладчиков на голубом фоне . Такой фон придает значительность и важность фигуре докладчика. Этот прием можно порекомендовать начинающим дизайнерам.

    Как правило, лучше работают цветовые решения, основанные на доминировании холодной или теплой гаммы цветов, а не на равномерном смешении оттенков . При этом в комбинациях, где преобладают теплые тона , для оформления выделений и усиления контраста могут использоваться холодные оттенки , и наоборот.

    Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом , или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

    Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет несколько сильнее, чем свет с большими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

    Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящему в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300-400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете.

    Спектр видимого излучения

    При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

    Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
    Фиолетовый 380-440 790-680 2,82-3,26
    Синий 440-485 680-620 2,56-2,82
    Голубой 485-500 620-600 2,48-2,56
    Зелёный 500-565 600-530 2,19-2,48
    Жёлтый 565-590 530-510 2,10-2,19
    Оранжевый 590-625 510-480 1,98-2,10
    Красный 625-740 480-400 1,68-1,98

    Граждане читатели, технари и гуманитарии, вы находитесь в опасности, немедленно переместитесь на улицу под теплое летнее солнышко (если погода позволяет), это не учебная тревога! Повторяю это не учебная тревога! Ну а если окружающие не оценят вашу попытку провести эвакуацию, то устраивайтесь поудобнее и давайте поговорим с вами об освещении. Если в двух словах, статья про воздействие бытового (внутреннего) освещения на наш с вами организм. Я постараюсь не перегружать статью техническими сведениями, для всех любознательных коллег оставлю соответствующие ссылки. Однако, без графиков все же не обойдемся (люблю я их просто). Статья получилась длинная, так что в итоге я решил что мы рассмотрим в первую очередь спектральную характеристику освещения ().

    Итак, представьте, друзья, что живет где-то на свете среднестатистический человек, назовем его Василий. И вот значится жил себе жил Василий 20 лет на опушке леса в средней полосе нашей бескрайней родины, да вот захотелось ему «кофе от лучших бариста», свитшотов, да «айфонов» глянцевых и решил Василий в город податься. А чтобы ему совсем не сладко жилось, то решил он податься в офис на цокольном этаже в славный город Мурманск, ну в общем в «бетонную коробку офисную», дабы трудится там не покладая рук и света божьего не видеть.

    А вот, что же там Василия ждало, спрятано под катом, всех любознательных милости просим.

    Статья будет большая и по смыслу делиться на три части
    1 – Спектральные характеристики источников света
    2 – Как можно померить спектр с помощью прямых рук и «синей изоленты»
    3 – Кратко о воздействии света на человека

    *Примечания представленные в статье спектры ввиду технических ограничений могут отличаться от реальных источников света, если есть желание проверьте сами.

    Часть 1 – спектральные характеристики источников света

    Для начала рассмотрим основные моменты

    1. До массового внедрения в быт электрических источников света, человечество во многом подстраивало свою жизнедеятельность (суточный цикл) под естественное освещение.
    2. Естественное освещение изменяется втечении суток, спектр излучения у него непрерывный, солнце светит в ультрафиолетовом, видимом, и инфракрасных диапазонах. для естественного освещения не характерна пульсация.
    3. Современный человек обычно проводит добрых 90% своего времени в помещениях (транспорт тоже будем считать искусственной средой)
    4. В помещениях человек, часто пользуется искусственным освещением (или совмещенным), даже летним днем не все имеют возможность использовать только естественное освещение
    5. Свет влияет на биологические процессы в организме человека

    Вот так выглядит спектр солнца с «радугой» и графиком, кто-то добросовестно сфотографировал московское небо

    Вернемся к Василию. Как мы помним почти всю свою сознательную жизнь он провел на природе, посмотрим как ему светило солнышко, и почему от него у ежей быстрей росли колючки.

    Ответственные мужи занимающиеся светотехникой сделали для нас модель условного дневного света различной цветовой температуры (это xls в котором можно моделировать не бойтесь), мы представим, что ранним утром Василию светило солнышко с температурой 4000К, в полдень с температурой 5500К ну а днем все 7000К, ну а к ночи двигалось в обратном порядке (примерная цветовая температура источников света ).

    Но такое лакомое солнышко светило очень и очень давно, что может ждать нашего героя попавшего в «бетонную коробку»?
    Учитывая, что большинство людей занятых на работах не связанных с производством, вряд ли сидят в помещениях похожих на офисы категории «А», то многих (и меня в частности) ждет это

    Дешёвые люминесцентные лампы с электромагнитной пуско-регулирующей аппаратурой, например ЛБ-40 с индексом цветопередачи (способностью воспроизводить корректно цвета) CRI<70.

    Возможно это будут более дорогие заморские баклажанные, лампы от Osram или Philips с CRI>80, ну а поскольку график под рукой у меня завалялся и для компактных люминесцентных ламп КЛЛ, то упомянем и про них.

    смотрим







    Итак, что мы видим, мы видим мечту любого скалолаза и способ проверки друзей по методу В. Высоцкого, а именно, горы и пики, причем чем дешевле лампа тем больше «Гималаи» мы наблюдаем.

    О чем нам это говорит? Это говорит нам в первую очередь о том, что свет совсем не такой как естественный. А если учесть, что наш подопытный Василий вынужден сидеть под совсем неизменным светом все свои 8 рабочих часов. Помните график выше? Естественный свет изменяется в течении дня, а этот вот нисколечко нет. Таким образом наш организм страдает от нахождения под непривычным освещением. Что связано с ухудшением здоровья, уменьшением зрительной работоспобности и производительности труда. Не верите мне? Спросите у мудрейшего Юлиан Борисовича Айзенберга (справочник по светотехнике стр. 889).

    Где же выход, возможно светодиодное освещение?

    Ну пожалуй, что не совсем. Хотя, уже намного лучше.
    Смотрим на графики и все равно «твой спектр на мамин совсем не похож». Все равно есть пик в синей области, провал в голубой, ну и опять напомню, что большинство светодиодных ламп светит одним цветов в течении дня.
    Картинок для RGB светодиодов у меня под рукой нет, но поверьте, что там дело обстоит ничуть не лучше (а пожалуй обычно даже хуже).

    Замеры тем что было под рукой


    картинка из интернета

    Спектр теплого белого СИД под спойлером.

    смотрим



    Итак, вот отпахал Василий свои 8 часов, вернулся домой и, устав от казённых ламп, приходит домой садиться на диван и окунается в теплый ламповый свет.

    И, кстати, это не так плохо, для вечернего домашнего освещения, лампа накаливания остается хорошим вариантом. Спектр лампы накаливания во многом соответствует спектру вечернего солнца, и не сильно подавляет выработку мелатонина(об этом чуть позже), опять таки один минус не регулируется в процессе дня.

    Спектр лампы накаливания под спойлером:

    Смотрим



    Посидел Василий дома подумал, подумал, решил что не будет больше здоровью вредить станет он дворянкою столбовою фрилансером и будет светом белым управлять, как захочет пока дома работает.
    И это, кстати, не самый плохой вариант, не смотря на то, что современные диммируемые светодиодные лампы все равно не дают полной идентичности естественному освещению, это все же лучше чем вышеупомянутые ЛБ-40 и даже может быть немного лучше чем просто светодиодные лампы. Причем если RGBW лампы это скорее баловство, то лампы на основе СИД теплого белого и холодного белого света вполне пригодны для освещения. Если заинтересовало, можно посмотреть в эту сторону

    По крайней мере такая лампа, может ступенчато имитировать теплый белый, нейтральный белый и холодный белый свет. (под спойлером) Что худо бедно вяжется с естественным солнечным циклом.

    Спектры лампы ML-19 Dual White E27 шар 9W (цветовая температура на основании данных производителя)

    смотрим






    Часть 2 - как можно померить спектр с помощью прямых рук и синей изоленты

    Как-то я уже поднимал эту тему на Хабре . Но, думаю, стоит рассказать вкратце.
    Итак, мы с вами загорелись картинками с радугой и решили начать везде мерить спектр. Поскольку самый дешёвый спектрометр стоит в РФ больше 70 т.р. (на момент написания статьи), то мы пойдем другим путем.

    Есть такие замечательные ребята с портала http://publiclab.org/ , много у них там интересной открытой науки и так далее. Но нас интересуют самодельные спектрометры.

    3. Дальше собираем все части вместе я использовал простой клеящий карандаш, а диф. решетку крепил изолентой (хотя двухсторонний скотч предпочтительнее), смотрим что получилось, а получилась хрупкая просвечивающаяся конструкция, поэтому если бумага изначально была плотная, то мы радостно сможем армировать ее изолентой, до тех пор пока не получим синий или черный квадрат Малевича, в итоге наш спектроскоп не должен пропускать никакого света, кроме света через щель.

    4. Берем желательно старый ненужный телефон (нет ну в принципе можно взять любой). И приклеиваем к его корпусу нашу конструкцию, предварительно определив куда будем приклеивать, так чтобы спектр нормально попадал в камеру. Можно конечно не приклеивать а каждый раз прикладывать, но это неудобно и спектры будут часто съезжать. Да кстати вовсе необязательно крепить к телефону, можно и к веб камере, как вам удобней. На фото самодельный спектрометр (обклеенный), и два комплекте первый его тот же самый но из комплекта, второй похожий по принципу но из пластика (качество по лучше):

    5. Обязательно идем снимать спектр компактной люминесцентной лампы (КЛЛ) или на худой конец обычной люминесцентной лампы, а потом уже все что душе годно После того как мы сфотографировали все спектры, что хотели. Их необходимо обработать, можно в любом графическом редакторе. Я как правило кадрирую и при необходимости центрирую. Поскольку метод калибровки (об этом ниже) предусматривает сравнение с эталоном, то надо чтобы все полоски спектра на всех снимках находились в одном и том же месте (насколько это возможно) или в итоге вы получите, что компьютер будет воспринимать сдвинутое изображение как свет с другой длиной волны.

    Ну вот вроде бы и все, статья получилась большая, думаю, что еще не скоро что-то осилю, поэтому спасибо всем, кто прочитал, берегите здоровье.

    О пульсации *Бонус

    Все искусственные источники света (лампы накаливания, люминесцентные, светодиодные), в той или иной степени пульсируют (световой поток в течении времени то становится меньше то больше), в зависимости от частоты пульсации наш глаз может это заметить, а может и не заметить, в любом случае понять что пульсация вредна достаточно просто, прогуляйтесь до любого светильника с некачественными люминесцентными лампами и пристально посмотрите на него минуту (хотя говорят, что если долго всматриваться в люминесцентную лампу то люминесцентная лампа начнет всматриваться в тебя).
    Существуют различные способы снизить пульсацию, как правило они заключаются в применение качественных электронных устройств питания и управления (ЭПРА для люминесцентных ламп, или драйверы для светодиодов).
    Но поскольку на мой взгляд достоверно из совсем уж подручных средств пульсацию не померить, то мы остановимся на вопросе спектральной характеристики света, а всем интересующимся измерением пульсации можно заглянуть сюда .