Ретикулярная формация. Вопрос47

Ретикулярной формацией называется сеть нейронов различных типов и размеров, имеющих многочисленные связи между собой, а также со всеми структурами ЦНС. Она располагается в толще серого вещества продолговатого, среднего и промежуточного мозга и регулирует уровень функциональной активности (возбудимость) всех нервных центров этих отделов ЦНС. Таким же образом она влияет на кору больших полушарий.

В ЦНС выделяют две подсистемы, выполняющие разные организующие функции: специфическую и неспецифическую . Первая обеспечивает восприятие, проведение, анализ и синтез сигналов специфической чувствительности. К ним относятся все ее виды, т.е. зрительная, слуховая, болевая и т.д.

Неспецифической подсистемой является ретикулярная формация. Она оказывает генерализованное возбуждающее или тормозящее влияние на многие структуры мозга. Следовательно, она может регулировать уровень функциональной активности моторной, сенсорной, висцеральных систем и организма в целом. Когда нервные импульсы идут по специфическим проводящим путям, по коллатералям этих путей они поступают и к нейронам ретикулярной формации. Это приводит к их диффузному возбуждению. От нейронов ретикулярной формации возбуждение передается на кору, что сопровождается возбуждением нейронов всех ее зон и слоев. Благодаря этому восходящему активирующему влиянию ретикулярной формации, повышается активность аналитико-синтетической деятельности, увеличивается скорость рефлексов, организм подготавливается к реакции на неожиданную ситуацию. Поэтому ретикулярная формация участвует в организации оборонительного, полового, пищеварительного поведения. С другой стороны, она может избирательно активировать или тормозить определенные системы мозга. В свою очередь кора больших полушарий, через нисходящие пути, может оказывать возбуждающее действие на ретикулярную формацию.

Нисходящие ретикулоспинальные пути идут от ретикулярной формации к нейронам спинного мозга. Поэтому она может оказывать нисходящие возбуждающие и тормозящие влияния на его нейроны. Например, ее гипоталамические и мезэнцефальные отделы повышают активность альфа-мотонейронов спинного мозга. В результате этого растет тонус скелетных мышц, усиливаются двигательные рефлексы. Тормозящее влияние ретикулярной формации на спинальные двигательные центры осуществляется через тормозные нейроны Реншоу. Это приводит к торможению спинальных рефлексов.

Ретикулярная формация контролирует передачу сенсорной информации через продолговатый, средний мозг, а также ядра таламуса.

Она непосредственно участвует в регуляции бодрствования и сна, за счет синхронизирующих центров сна и бодрствования, находящихся в ней.

На нейроны ретикулярной формации оказывают влияние различные фармакологические вещества: амфетамины, кофеин, LSB – 25, морфин (опыт Эдисона).

Функции мозжечка.

Мозжечок состоит их двух полушарий и червя между ними. Серое вещество образует кору и ядра. Белое образовано отростками нейронов. Мозжечок получает афферентные нервные импульсы от тактильных рецепторов, рецепторов вестибулярного аппарата, проприорецепторов мышц и сухожилий, а также двигательных зон коры. Эфферентные импульсы от мозжечка идут к красному ядру среднего мозга, ядру Дейтерса продолговатого мозга, к таламусу, а затем к мотонейроным зонам коры больших полушарий и подкорковым ядрам.

Общей функцией мозжечка является регуляция позы и движения. Эту функцию он осуществляет путем координации активности других двигательных центров: вестибулярных ядер, красного ядра, пирамидных нейронов коры. Поэтому он выполняет следующие двигательные функции:

    Регуляцию мышечного тонуса позы.

    Коррекцию медленных целенаправленных движений в ходе их выполнения, а также координацию этих движений с рефлексами положения тела.

    Контроль за правильным выполнением быстрых движений, осуществляемых корой.

В связи с тем, что мозжечок выполняет данные функции. При его удалении у животного развивается комплекс двигательных нарушений, называемый триадой Лючиани . Он включает:

    Атония и дистония – снижение и неправильное распределение тонуса скелетных мышц.

    Астазия – невозможность слитного сокращения мышц, а как следствие, сохранения устойчивого положения тела при стоянии, сидении (покачивание).

    Астения – быстрое утомление мышц.

    Атаксия – плохая координация движений при ходьбе. Неустойчивая «пьяная» походка.

    Адиадохокинез – нарушение правильной последовательности быстрых целенаправленных движений.

В клинике умеренные поражения мозжечка проявляются триадой Шарко :

    Нистагм глаз в состоянии покоя.

    Тремор конечностей, возникающий при их движениях.

    Дизартрия – нарушение речи.

Л. А. Орбели установил, что мозжечок влияет и на различные вегетативные функции. Это влияния могут быть возбуждающими и тормозящими. Например, при раздражении мозжечка увеличивается или снижается кровяное давление, изменяется частота сердцебиений, дыхание, пищеварение. Мозжечок влияет на обмен веществ. На эти функции он воздействует через вегетативные нервные центры, координация их активности с движением. Функции внутренних органов изменяются в связи с изменением обменных процессов в них. Поэтому мозжечок оказывает на них адаптационно-трофическое влияние.

Билет 15

1. Формы (фрагменты) афферентного синтеза: Доминирующая мотивация; Обстановочная афферентация; Пусковая афферентация. Роль ретикулярной формации.

2. Быстрые и медленные мышечные волокна.

Вопрос 1

АФФЕРЕНТНЫЙ СИНТЕЗ - (соединение, составление) - процесс сопоставления, отбора и синтеза многочисленных и разных по функциональному значению афферентаций, вызванных различными воздействиями на организм, происходящий в ц. н. с., на основе к-рого формируется цель действия.

А. с. согласно теории функциональной системы Анохина - первая, универсальная, стадия любого целенаправленного поведенческого акта (см. Функциональные системы).

А. с. включает обработку 4 основных видов афферентных возбуждений.

1. Мотивационное возбуждение отражает доминирующую потребность организма, к-рая возникает под влиянием метаболических, гормональных, а у человека - и социальных факторов Мотивация играет решающую роль в формировании цели действия. Специфически повышая реактивность корковых нейронов с помощью ориентировочно-исследовательской реакции , мотивационное возбуждение способствует обработке и активному отбору сенсорной информации, необходимой для построения целенаправленного поведения.

2. Обстановочная афферентация представляет собой воздействие на организм всей совокупности внешних факторов, составляющих конкретную обстановку, на фоне к-рой развертывается приспособительная деятельность. Обстановочная афферентация формируется не только постоянными компонентами обстановки, но и рядом последовательных афферентных воздействий на организм. Характерная особенность обстановочной афферентации состоит в том, что она придает специфику будущей поведенческой реакции, обеспечивая ее приспособительное значение только в данной обстановке.

Наиболее отчетливо роль обстановочной афферентации проявляется в опытах с условными рефлексами. В этих случаях на один и тот же условный раздражитель животное отвечает условной оборонительной реакцией в одной экспериментальной камере и условной пищевой - в другой (или в одной и той же экспериментальной камере утром животное отвечает пищевой реакцией, а вечером - оборонительной).



На стадии афферентного синтеза решаются вопросы “что делать?”, “как делать?”, “когда делать?”.

Пусковая афферентация

Представляет собой специальный раздражитель, собственно запускающий поведенческую реакцию. Значение пускового раздражителя состоит в том, что он призван обозначить момент начала поведенческой реакции.

Целенаправленное поведение может начинаться и без явного пускового стимула. Примерами таких реакций являются регулярно совершающиеся физиологические отправления (еда, сон, дефекация, мочеиспускание и др.), приуроченные к определенным периодам суток.

Афферентный синтез осуществляется на основе следующих нейрофизиологических механизмов:

1) механизмы восходящих активирующих влияний подкорковых образований на кору головного мозга. Это прежде всего, активирующие влияния гипоталамуса к лобным отделам коры, через передние ядра таламуса, что отражает мотивационные возбуждения. Аналогичным образом воздействуют другие лимбические системы. Вторыми по активирующему значению являются ретикулярные структуры среднего мозга и моста, которые обеспечивают соответствующий уровень бодрствования.

2) механизмы конвергенции возбуждений различного качества на нейронах коры и подкорковых структурах мозга. В частности, мультисенсорная конвергенция от поверхностей (зрительная, тактильная, слуховая, температурная и др.); мультибиологическая конвергенция, связанная с определенными состояниями (голод, боль и т.п.) и др.;

3) интеграцию мотивационных, обстановочных и пусковых афферентаций на нейронах коры мозга;

4) механизмы формирования доминанты, за счет которых подавляется текущая деятельность и удерживается вновь сформированная поведенческая реакция.

Роль ретикулярной формации

Ретикулярная формация характеризуется относительно малой возбудимостью. Эффекты ее раздражения появляются через большой латентный период, она медленно реагирует и остается активной в течение продолжительного времени после прекращения раздражения (длительное последействие). Ретикулярная формация облегчает или подавляет фазные движения и напряжение скелетных мышц, вызываемые мотонейронами спинного мозга, а также движения, вызванные с коры больших полушарий. Ретикулярная формация среднего и промежуточного мозга облегчает рефлекторные движения животных, раздражение промежуточного мозга тормозит двигательные рефлексы спинного мозга.

Боковые отделы ретикулярной формации варолиева моста и среднего мозга облегчают, а средние ее отделы в продолговатом мозге тормозят двигательные рефлексы. Облегчение и торможение зависят также от интенсивности и продолжительности раздражения ретикулярной формации. По гамма-нейронам она регулирует функции мышечных веретен, следовательно, обратную информацию из скелетных мышц. Она изменяет также возбудимость восходящих афферентных путей спинного мозга, что может снизить или прекратить постсинаптическое торможение. Тонические влияния ретикулярной формации вызывают ВПСП или ТПСП в мотонейронах спинного мозга. Она изменяет также передачу импульсов в мозговом стволе и одновременно с влиянием на скелетную мускулатуру вызывает сосудодвигательные, дыхательные, зрачковые и другие реакции.

Ретикулярная формация оказывает адаптационно-трофическое влияние на кору больших полушарий, подкорковые образования промежуточного мозга, мозжечок и спинной мозг. Существуют взаимные влияния этих отделов нервной системы, как возбуждающие, так и тормозящие. Она участвует в физиологических процессах сна и пробуждения, а также в эмоциях, в реакции напряжения («стресс») и др. Раздражение ретикулярной формации вызывает пробуждение спящих животных, а ее разрушение и выключение - глубокий сон у бодрствующих животных. Изучены взаимные влияния ретикулярной формации и коры больших полушарий.Установлено участие ретикулярной формации в образовании и протекании условных рефлексов

По симпатическим волокнам ретикулярная формация регулирует возбудимость и работоспособность скелетной мускулатуры, функциональное состояние нервной системы и органов чувств, оказывая на них адаптационно-трофическое влияние. Регуляция рефлексов позы и двигательных рефлексов, перемещающих тело, осуществляется по эфферентным гамма-волокнам иннервирующим проприоцепторы.

Ретикулярная формация регулирует вегетативные функции, деятельность внутренних органов. Она влияет на образование гормонов в гипофизе и других железах внутренней секреции и в ней концентрируются гормоны и медиаторы.

Афферентные волокна поступают в нее по симпатическим и блуждающим нервам. Частьклеток ретикулярной формации среднего мозга и варолнева моста возбуждается адреналином и норадреналином (адренореактивные системы) а другая часть, расположенная в промежуточном мозге, несколько выше среднего мозга, возбуждается ацетилхолином и его производными (холинореактивные системы). Адренореактивные системы среднего мозга и варолиева моста облегчают наступление двигательных рефлексов, а адренореактивные системы продолговатого мозга тормозят спинномозговые рефлексы. Адреналин возбуждает и холинореактивные системы. Предполагается, что действие ацетилхолина и его производных менее ограничено, чем действие адреналина, и охватывает многие области головного мозга. Действие ацетилхолина на ретикулярную формацию противоположно его периферическому влиянию на внутренние органы. Ретикулярную формацию среднего и продолговатого мозга возбуждает углекислота.

Гормоны и медиаторы действуют на функцию больших полушарий как непосредственно, так и посредством ретикулярной формации. Таким образом, ретикулярная формация мозгового ствола - подкорковый центр вегетативной нервной системы.

Вопрос 2 .

Термин ретикулярная формация предложил в 1865 году немецкий ученый О. Дейтерс. Под этим термином Дейтерс понимал разбросанные в стволе головного мозга клетки, окруженные множеством волокон, идущих в различных направлениях. Именно сетевидное расположение волокон, связывающих между собой нервные клетки, послужило основой для предложенного названия.

В настоящее время морфологами и физиологами накоплен богатый материал о строении и функциях ретикулярной формации. Установлено, что структурные элементы ретикулярной формации локализуются в целом ряде мозговых образований, начиная с промежуточной зоны шейных сегментов спинного мозга (VII пластина), и заканчивая некоторыми структурами промежуточного мозга (интраламинарными ядрами, таламическим ретикулярным ядром). Ретикулярная формация состоит из значительного числа нервных клеток (в ней содержится почти 9/10 клеток всего ствола мозга). Общие черты строения ретикулярных структур - наличие особых ретикулярных нейронов и отличительный характер связей.

Рис. 1. Нейрон ретикулярной формации. Сагиттальный разрез ствола мозга крысенка.

На рисунке А представлен только один нейрон ретикулярной формации. Видно, что аксон разделяется на каудальный и ростральный сегменты, большой протяженности, со множеством коллатералей. Б. Коллатерали. Сагиттальный разрез нижней части ствола мозга крысенка, показывающий соединения коллатералей большого нисходящего пути (пирамидный путь) с ретикулярными нейронами. Коллатерали восходящих путей (сенсорные пути), отсутствующие на рисунке, соединяются с ретикулярными нейронами подобным же образом (по Шейбэлу М. Э. и Шейбэлу А. Б.)

Наряду с многочисленными отдельно лежащими нейронами, различными но форме и величине, в ретикулярной формации головного мозга имеются ядра. Рассеянные нейроны ретикулярной формации прежде всего играют важную роль в обеспечении сегментарных рефлексов, замыкающихся на уровне ствола головного мозга. Они выступают в качестве вставочных нейронов при осуществлении таких рефлекторных актов, как моргание, роговичный рефлекс и т. д.

Выяснено значение многих ядер ретикулярной формации. Так, ядра, расположенные в продолговатом мозге, имеют связи с вегетативными ядрами блуждающего и языкоглоточного нервов, симпатическими ядрами спинного мозга, они участвуют в регуляции сердечной деятельности, дыхания, тонуса сосудов, секреции желез и т. д.

Установлена роль голубого пятна и ядер шва в регуляции сна и бодрствования. Голубое пятно , находится в верхнелатеральной части ромбовидной ямки. Нейроны этого ядра продуцируют биологически активное вещество - норадреналин , который оказывает активирующее воздействие на нейроны вышележащих отделов мозга. Особенно высока активность нейронов голубого пятна во время бодрствования, во время глубокого сна она угасает почти полностью. Ядра шва располагаются по срединной линии продолговатого мозга. Нейроны этих ядер вырабатывают серотонин , который вызывает процессы разлитого торможения и состояние сна.

Ядра Кахаля и Даркшевича , относящиеся к ретикулярной формации среднего мозга, имеют связи, с ядрами III, IV, VI, VIII и XI пар черепных нервов. Они координируют работу этих нервных центров, что очень важно для обеспечения сочетанного поворота головы и глаз. Ретикулярная формация ствола головного мозга имеет важное значение в поддержании тонуса скелетной мускулатуры, посылая тонические импульсы на мотонейроны двигательных ядер черепных нервов и двигательных ядер передних рогов спинного мозга. В процессе эволюции из ретикулярной формации выделились такие самостоятельные образования, как красное ядро, черное вещество.

По структурно-функциональным критериям ретикулярная формация делится на 3 зоны:

1. Медианную, расположенную по средней линии;

2. Медиальную, занимающую медиальные отделы ствола;

3. Латеральную, нейроны которой лежат вблизи сенсорных образований.

Медианная зона представлена элементами шва, состоящие из ядер, нейроны которых синтезируют медиатор – серотонин. Система ядер шва принимает участие в организации агрессивного и полового поведения, в регуляции сна.

Медиальная (осевая) зона состоит из мелких нейронов, которые не ветвятся. В зоне располагается большое количество ядер. Встречаются также крупные мультиполярные нейроны с большим числом густо ветвящихся дендритов. Они образуют восходящие нервные волокна в кору больших полушарий и нисходящие нервные волокна в спинной мозг. Восходящие пути связи медиальной зоны оказывают активирующее влияние (прямо или опосредованно через таламус) на новую кору. Нисходящие пути оказывают тормозящее влияние.

Латеральная зона – к ней относятся ретикулярные образования, расположенные в стволе мозга вблизи сенсорных систем, а также ретикулярные нейроны, лежащие внутри сенсорных образований. Основным компонентом этой зоны является группы ядер, которые примыкают к ядру тройничного нерва. Все ядра латеральной зоны (за исключением ретикулярного латерального ядра продолговатого мозга) состоят из нейронов малой и средней величины и лишены крупных элементов. В этой зоне располагаются восходящие и нисходящие пути, обеспечивающие связь сенсорных образований с медиальной зоной ретикулярной формации и моторными ядрами ствола. Эта часть ретикулярной формации является более молодым и возможно прогрессивнее, с ее развитием связан факт уменьшения объема осевой ретикулярной формации в ходе эволюционного развития. Таким образом, латеральная зона – это совокупность элементарных интегративных единиц, сформированных вблизи и внутри специфических сенсорных систем.

Рис. 2. Ядра ретикулярной формации (РФ) (по: Niuwenhuys еt. аl, 1978).


1-6 - медианная зона РФ: 1-4- ядра шва (1 - бледное, 2 - темное, 3 - большое, 4- мостовое), 5 - верхнее центральное, 6 - дорсальное ядро шва, 7-13 - медиальная зона РФ: 7 - ретикулярное парамедианное, 8 - гигантоклеточное, 9 - ретикулярное ядро покрышки моста, 10, 11 - каудальное (10) и оральное (11) ядра моста, 12 - дорсальное покрышечное ядро (Гуддена), 13 - клиновидное ядро, 14- I5-латеральная зона РФ: 14 - центральное ретикулярное ядро продолговатого мозга, 15 - латеральное ретикулярное ядро, 16, 17 - медиальное (16) и латеральное (17) парабрахиальные ядра, 18, 19 - компактная (18) и рассеянная (19) части педункуло-понтийного ядра.

Благодаря нисходящим влияниям ретикулярная формация оказывает тоническое влияние и на мотонейроны спинного мозга, что в свою очередь повышает тонус скелетной мускулатуры, совершенствует систему обратной афферентной связи. В результате любой двигательный акт совершается значительно эффективнее, осуществляет более точный контроль за движением, но чрезмерное возбуждение клеток ретикулярной формации может привести к дрожанию мышц.



В ядрах ретикулярной формации находятся центры сна и бодрствования, и стимуляция тех или иных центров приводит или к наступлению сна, или к пробуждению. На этом основано применение снотворных. В ретикулярной формации расположены нейроны, реагирующие на болевые раздражения, идущие от мышц или внутренних органов. В ней также расположены специальные нейроны, которые обеспечивают быструю реакцию на внезапные, неопределенные сигналы.

Ретикулярная формация тесно связана с корой больших полушарий, благодаря этому формируется функциональная связь между внешними отделами ЦНС и стволом головного мозга. Ретикулярная формация играет важную роль как в интеграции сенсорной информации, так и в контроле над деятельностью всех эффекторных нейронов (моторных и вегетативных). Она имеет также первостепенное значение для активации коры больших полушарий, для поддержания сознания.

Необходимо отметить, что кора полушарий большого мозга, и в свою очередь, посылает по корково-ретикулярным путям импульсы в ретикулярную формацию. Эти импульсы возникают в основном в коре лобной доли и проходят в составе пирамидных путей. Корково-ретикулярные связи оказывают либо тормозное, либо возбуждающее действие на ретикулярную формацию ствола головного мозга, они осуществляют корректировку прохождения импульсов по эфферентным путям (отбор эфферентной информации).

Таким образом, между ретикулярной формацией и корой полушарий большого мозга имеется двусторонняя связь, которая обеспечивает саморегуляцию в деятельности нервной системы. От функционального состояния ретикулярной формации зависит тонус мускулатуры, работа внутренних органов, настроение, концентрация внимания, память и т. д. В целом ретикулярная формация создает и поддерживает условия для осуществления сложной рефлекторной деятельности с участием коры полушарий большого мозга.

Резюме: биологической основой внимания является ориентировочный рефлекс.

И.П.Павлов описал ориентировочный рефлекс как безусловный рефлекс, выступающий основой непроизвольного внимания. Сами же процессы внимания в его системе объясняются, прежде всего, за счет взаимодействия возбуждения и торможения, протекающих в коре больших полушарий мозга. Когда человек внимателен к чему-либо, это означает, что у него в коре головного мозга возникает очаг возбуждения. В это же время все остальные участки мозга находятся в состоянии торможения. Поэтому человек, сосредоточенный на чем-либо одном, может ничего другого в этот момент не замечать. Но эти представления о мозговых взаимоотношениях имеют слишком абстрактный вид. Чтобы в этом убедиться, стоит сравнить этот подход с подходом А.Р.Лурия.

Учение А.Р.Лурия. В учении А.Р.Лурия о мозговой локализации высших психических функций человека дана структурно-функциональная модель мозга, в которой каждая высшая психическая функция выполняется за счет совместной работы трех мозговых блоков (Лурия А.Р. Основы нейропсихологии. М., 1973). Первый блок (блок регуляции уровня общей и избирательной активации мозга) образован неспецифическими структурами ретикулярной формации ствола мозга, структурами среднего мозга, диэнцефальных отделов ствола, лимбической системы, медиобазальными отделами коры лобных и височных долей мозга. Второй блок (блок приема, переработки и хранения модально-специфической информации) образован основными анализаторными системами (зрительной, слуховой, кожно-кинестетической), корковые зоны которых расположены в задних отделах больших полушарий. Третий блок (блок программирования, регуляции и контроля за протеканием психической функции, обеспечивающий формирование мотивов деятельности и контроль за результатами деятельности посредством большого числа двусторонних связей с корковыми и подкорковыми структурами) образован моторными, премоторными и префронтальными отделами коры больших полушарий. При этом важна последовательность работы этих структур: на первом этапе происходит побуждение к деятельности, основой которой выступает, в том числе, активизация ретикулярной формации.

Роль ретикулярной формации. Способность настораживаться, реагируя иногда на очень незначительное изменение в окружающей среде, обеспечивается расположенными в больших полушариях мозга сетями нервных путей, соединяющих ретикулярную формацию (совокупность структур головного мозга, регулирующих уровень возбудимости) с разными участками коры больших полушарий. Нервные импульсы, идущие по этой сети, возникают вместе с сигналами от органов чувств и возбуждают кору, приводя ее в состояние готовности реагировать на ожидаемые в дальнейшем раздражения. Таким образом, ретикулярная формация с ее восходящими и нисходящими волокнами вместе с органами чувств обуславливает появление ориентировочного (или ориентировочно-исследовательский) рефлекса, являясь первичной физиологической основой внимания.



Еще в 1935 г. Ф.Бремер провел сравнение электроэнцефалограмм при двух типах перерезки ствола мозга: а) на уровне шейных позвонков (препарат, называемый «encephale isole» - нижние отделы ствола) и б) на уровне моста (препарат «cerveau isole» - верхние отделы ствола). В первом случае записи биоэлектрической активности не отличались от ЭЭГ нормальных животных, тогда как во втором случае в ЭЭГ постоянно присутствовали медленные волны большой амплитуды, характерные для состояния сна. В препаратах, называемых «cerveau isole», коры достигают только зрительные и обонятельные афферентные раздражения, поскольку сигналы, передаваемые другими черепномозговыми нервами (в частности, слуховым и тройничным), оказываются перерезанными. Отсюда Ф.Бремер сделал вывод, что, когда центральная нервная система лишается большей части стимуляции, исходящей из внешнего мира, наступает сон; соответственно поддержание состояния бодрствования является результатом активирующего воздействия, оказываемого ощущениями. Как показал затем Д.Линдсли, в этих случаях сигналы, вызываемые сенсорными раздражителями, продолжают доходить до коры, но электрические ответы коры на эти сигналы становятся лишь кратковременными и не вызывают стойких изменений. Это показало, что для возникновения стойких процессов возбуждения, характеризующих состояние бодрствования, одного притока сенсорных импульсов недостаточно, необходимо поддерживающее влияние активирующей ретикулярной системы.

Эти представления о процессах общей активации получили дальнейшее развитие в работах Г.Моруцци и Г.Мэгуна (Moruzzi G., Magoun H.W. Brain stem reticular formation and activation of the EEG // EEG and Clinical Neurophysiology. 1949, 1 - «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ»). Они провели эксперименты на основе электростимуляции мозга, выявившие функции неспецифической системы мозга – ретикулярной формации ствола мозга, относимой, наряду с лимбической системой, к «модулирующим» системам мозга. Основной функцией этих систем является регуляция функциональных состояний организма. Исследователи не выключали, а раздражали восходящую ретикулярную формацию имплантированными в нее электродами, показали, что такое раздражение ретикулярной формации приводит к пробуждению животного, а дальнейшее усиление этих раздражений - к возникновению выраженных эффективных реакций животного. Оказалось, что при раздражении ее электрическим током, происходит реакция активации, а при удалении этой структуры наступает кома. Эти структуры фактически ответственны за поддержание состояния бодрствования, причем степень их активности сама отчасти зависит от сенсорных влияний. Однако вопреки тому, что предполагал Бремер, активирующее влияние сенсорики проявляется не в форме прямой активации мозговой коры специфическими сигналами; она воздействует прежде всего на ретикулярную формацию, активность которой в свою очередь регулирует функциональное состояние коры, двигательных и вегетативных центров. Было установлено, что кортикальный сон препаратов «cerveau isole» Бремера вызывался не перерезкой специфических сенсорных путей к коре, а устранением влияний, оказываемых на нее ретикулярной формацией.

Также в опытах Д.Линдсли было выявлено, что раздражение стволовых ядер восходящей активирующей ретикулярной формации существенно понижает пороги чувствительности (иначе говоря, обостряют чувствительность) животного и позволяет осуществлять тонкие дифференцировки (например, дифференцировку изображения конуса от изображения треугольника), которые ранее были недоступны животному.

Нейроанатомия ретикулярной формации. Первоначально считалось, что к неспецифической системе мозга, которая выполняет задачу диффузной и генерализованной активации коры больших полушарий, относятся лишь сетевидные образования ствола мозга. Сейчас принято, что восходящая неспецифическая активирующая система занимает место от продолговатого мозга до зрительного бугра (таламуса).

Ретикулярная (от лат. слова reticulum – сеточка) формация состоит из многочисленных, не имеющих чётких границ групп нейронов. Подобное скопление нервных клеток по своему принципу организации напоминает нервные сети кишечнополостных. Их длинные и сильно ветвящиеся отростки формируют сети вокруг серого вещества спинного мозга и в дорсальной части ствола мозга. Впервые описана в середине XIX века, а название этой структуре дал О.Дейтерс. В ретикулярной формации ствола мозга выделяют свыше 100 ядер, которые на протяжении от спинного мозга до промежуточного мозга объединяются в три основные группы. 1) Срединная группа ядер концентрируется вокруг средней линии, в основном, в области шва моста и продолговатого мозга (ядра шва), которые образованы волокнами чувствительных проводящих путей, идущих от спинного мозга, ядер тройничного нерва и формирующих перекрест вдоль средней линии. 2) Медиальная группа ядер расположена по сторонам от предыдущей: к ней относятся медиальное крупноклеточное ядро, голубоватое место, нейроны центрального серого вещества среднего мозга и др. 3) Латеральная группа ядер находится латеральнее медиальной и включает латеральное ретикулярное ядро, парабрахиальные ядра и др.

Нейроны ретикулярной формации имеют различную величину: в срединных и медиальных ядрах находятся крупные нервные клетки, которые формируют длинные афферентные и эфферентные проводящие пути, а в латеральных - средние и мелкие нейроны, которые являются, в основном, ассоциативными нейронами.

Большинство нейронов ретикулярной формации в качестве передатчика нервного импульса используют пептиды (энкефалины, нейротензин и т.д.), но также широко представлены и моноамины. Ядра шва содержат серотонинергические нейроны, а голубоватого места – норадренергические.

Связи ретикулярной формации подразделяются на афферентные и эфферентные. На ее нейронах заканчиваются афферентные волокна: от спинного мозга, следующие по ответвлениям всех чувствительных проводящих путей, а также по спиноретикулярному тракту, от ядер черепных нервов в составе коллатералей ядерно-корковых, слухового и зрительных путей, от мозжечка в составе мозжечково-ретикулярного пути, от ядер таламуса, субталамуса и гипоталамуса, полосатого тела, структур лимбической системы, различных участков коры большого мозга, в том числе и по ответвлениям корково-спинномозговых и корково-ядерных путей. Нейроны ретикулярной формации имеют длинные тонкие эфферентные отростки, делящиеся на восходящую и нисходящую ветви, которые направляются к различным отделам головного и спинного мозга: моторным нейронам передних рогов спинного мозга и двигательным ядрам черепных нервов ствола мозга в составе ретикуло-ядерных и ретикуло-мозжечковых путей, мозжечку, красному ядру, чёрному веществу и ядрам пластинки крыши спинного мозга, ретикулярным ядрам таламуса, ядрам гипоталамуса, опосредованно, через ядра промежуточного мозга к полосатому телу, лимбической системе и новой коре.

С помощью ретикулярной формации двигательные и вегетативные ядра ствола мозга объединяются в функциональные центры, регулирующие многие сложные формы поведения: циркуляторную, дыхательную, кашлевую, глотательную, рвотную и др. Ретикулярная формация обеспечивает: 1) Поддержание состояния бодрствования. Увеличивая или уменьшая приток сенсорной информации к коре больших полушарий и подкорковым структурам, ретикулярная формация играет роль регулятора уровня сознания (цикл сон/бодрствование). Регулируя медиаторный обмен нейронов ретикулярной формации или модулируя активность их рецепторов с помощью определённых лекарственных препаратов, можно активизировать деятельность коры больших полушарий или наоборот - добиться сна. Например, кофеин, содержащийся в кофе или чае, стимулирует нервные клетки ретикулярной формации. Наоборот, среди психотропных средств (от греч. psyche - душа + tropos - направление) есть так называемые нейролептики, которые, блокируя ретикулярную формацию мозга и снижая скорость проведения возбуждения, действуют успокаивающим образом (подавляют бред, галлюцинации, чувство страха, агрессивность, психомоторное возбуждение). 2) Контроль рефлекторной деятельности путём стимуляции или торможения мотонейронов передних рогов серого вещества спинного мозга и двигательных ядер черепных нервов ствола мозга. 3) Объединение группы нейронов различных отделов головного и спинного мозга, благодаря чему возможно выполнение сложных рефлекторных актов: глотания, жевания, кашля, рвоты и т.д. 4) Обеспечение вегетативной регуляции за счёт координации эфферентных и афферентных сигналов в соответствующих центрах ствола мозга. Так, сосудодвигательный и дыхательный центры объединяют группы нейронов, ответственных за регуляцию дыхания и кровообращения. 5) Участие в эмоциональном восприятии чувствительных сигналов путём увеличения или уменьшения поступления афферентных импульсов к лимбической системе.

Избирательный характер протекания психических процессов, что характерно для внимания, обеспечивается лишь бодрственным состоянием коры с оптимальным уровнем возбудимости. Этот бодрственный уровень достигается за счет работы механизмов связи верхнего ствола с корой головного мозга и, прежде всего, с работой восходящей активирующей ретикулярной формацией. Именно эта восходящая активирующая ретикулярная формация доносит до коры, сохраняя ее в состоянии бодрствования, импульсы, связанные с обменными процессами организма, влечениями, с экстерорецепторами, доводящими информацию из внешнего мира. Сначала этот поток идет в верхние отделы ствола и ядра зрительного бугра, а затем – в кору головного мозга.

Обеспечение оптимального тонуса и бодрственного состояния коры осуществляется, однако, не только восходящей активирующей ретикулярной формацией. С ней тесно связан и аппарат нисходящей системы, волокна которой начинаются в коре головного мозга (прежде всего в медиальных и медиобазальных отделах лобных и височных долей) и направляются как к ядрам ствола, так и к двигательным ядрам спинного мозга. Работа нисходящей ретикулярной формации очень важна тем, что с ее помощью до ядер мозгового ствола доводятся те формы возбуждения, которые первоначально возникают в коре головного мозга и являются продуктом высших форм сознательной деятельности человека с ее сложными познавательными процессами и сложными программами прижизненно формируемых действий.

Взаимодействие обеих составных частей активирующей ретикулярной системы и обеспечивает сложнейшие формы саморегуляции активных состояний мозга, меняя их под воздействием как элементарных (биологических), так и сложных (социальных по происхождению) форм стимуляции.

Ретикулярная (сетчатая) формация представляет собой скопле­ния нейронов, различных по функции и размерам, связанных множеством нервных волокон, проходящих в разных направлени­ях и образующих сеть на всем протяжении ствола мозга, что и оп­ределяет ее название. Нейроны расположены либо диффузно, ли­бо образуют ядра.

Нейроны ретикулярной формации имеют длинные маловетвя­щиеся дендриты и хорошо ветвящиеся аксоны, которые часто образуют Т-образное ветвление: одна из ветвей аксона имеет нисхо­дящее, а вторая - восходящее направление.

А. Функциональные особенности нейронов ретикулярной фор­мации:

подимодалыюстъ - для нейронов ретикулярной формации ха­рактерна полисенсорная конвергенция, они принимают коллатерали от нескольких сенсорных путей, идущих от разных рецепто­ров;

тоническая активность, в покое равная 5-10 имп/с;

высокая чувствительность к некоторым веществам крови (например, адреналину, СО2) и лекарствам (барбитуратам, амина­зину и др.);

Более выраженная возбудимость по сравнению с другими нейронами;

высокая лабильность - до 500-1000 имп/с.

Нейроны и ядра ретикулярной формации входят в состав цен­тров, регулирующих функции внутренних органов (кровообра­щения, дыхания, пищеварения), тонус скелетной мускулатуры (см. раздел 5.3), активность коры большого мозга. Обширны связи ретикулярной формации с другими отделами ЦНС и рефлексо­генными зонами: она получает импульсацию от различных рецеп­торов организма и отделов ЦНС и в свою очередь посылает им­пульсы во все отделы мозга. При этом выделяют восходящие и нисходящие влияния ретикулярной формации.

Б. Нисходящие влияния ретикулярной формации на моторные спинальные центры. От ретикулярного гигантоклеточного ядра продолговатого мозга идет частично перекрещенный латераль­ный ретикулоспинальный тракт, волокна которого оканчиваются на вставочных нейронах спинного мозга. Через эти интернейроны они возбуждают а- и у-мотонейроны мышц-сгибателей мускула­туры конечностей и реципрокно тормозят с помощью тормозных интернейронов мышцы-разгибатели.

От каудальных и оральных ретикулярных ядер моста идет не­перекрещенный медиальный ретикулоспинальный тракт, волокна которого оканчиваются на интернейронах спинного мозга. Через них осуществляется стимуляция а- и у-мотонейронов мышц-раз­гибателей, а через тормозные интернейроны тормозятся мышцы-сгибатели. О роли ретикулярной формации моста, продолговато­го мозга в регуляции тонуса мышц-разгибателей см. рис. 5.9.

В. Восходящие влияния РФ на большой мозг могут быть как активирующими, так и тормозными. Импульсы ретикулярных нейронов продолговатого мозга (гигантоклеточное, латеральное и вентральное ретикулярные ядра), моста (особенно каудальное ретикулярное ядро) и среднего мозга поступают к неспецифическим ядрам таламуса, и после переключения в них проецируются в различные области коры. Кроме таламуса восходящие влияния поступают также в задний гипоталамус, полосатое тело.

В эксперименте после перерезки ствола мозга между верхними и нижними холмиками четверохолмия (изолированный передний мозг) у животного не нарушалось поступление в кору большого мозга возбуждения по важнейшим сенсорным системам - зритель­ной и обонятельной. Однако животное вело себя как спящее: у него был нарушен контакт с внешним миром, оно не реагировало на световые и обонятельные раздражители (спящий мозг по Бремеру). На ЭЭГ у таких животных преобладали медленноволновые регу­лярные ритмы. У человека аналогичные ритмы возникают при спо­койном бодрствовании и в дремотном состоянии. Такое же состоя­ние головного мозга (спящий мозг) наблюдается при повреждении только восходящих путей ретикулярной формации.

Стимуляция ретикулярной формации вызывает пробуждение животного [Мегун Г., Моруцци Дж., 1949]. На ЭЭГ медленные ритмы сменяются при этом высокочастотными ритмами (реакция десинхронизации), свидетельствующими об активированном со­стоянии коры головного мозга. На основании полученных дан­ных сложилось представление о том, что важнейшей функцией восходящей ретикулярной формации является регуляция цикла сон/бодрствование и уровня сознания.

Тормозное влияние ретикулярной формации на большой мозг изучено значительно хуже. В.Гесс (1929), Дж.Моруцци (1941) ус­тановили, что раздражением некоторых точек ретикулярной фор­мации ствола мозга можно перевести животное из бодрствующего состояния в сонное. При этом возникает реакция синхронизации ритмов ЭЭГ.

СИСТЕМЫ СВЯЗЕЙ СТВОЛА МОЗГА

Связи различных отделов ЦНС осуществляются с помощью нервных путей, идущих в различных направлениях и выпол­няющих разные функции, что и положено в основу их классифи­кации. В частности, в спинном мозге, как и в других отделах ЦНС, выделяют восходящие и нисходящие пути (определяющим фактором этой классификации является направление потока им­пульсов).

Кроме того, в стволе мозга восходящие системы подразделяют на специфические и неспецифические.

Восходящие и нисходящие пути спинного мозга рассмотрены в разделе 5.2.2.

Проводниковая функция ствола мозга выполняется нисходя­щими и восходящими путями, часть из которых переключается в стволовых центрах, другая часть идет транзиторно (без переклю­чения).

А. Восходящие пути являются частью проводникового отдела анализаторов, передающих информацию от рецепторов в проек­ционные зоны коры. В стволе мозга выделяют две восходящие системы: специфическую и неспецифическую.

1. Специфическую восходящую систему составляет лемнискота-ламический путь, в котором выделяют медиальную и латеральную петли. Медиальная петля образуется преимущественно из аксонов нейронов тонкого ядра (Голля) и клиновидного ядра (Бурдаха), которые проводят импульсы от проприорецепторов. Волокна медиальной петли переключаются в вентральных задних специфических ядрах таламуса. Медиальная петля входит в проводниковый отдел слухового анализатора, ее во­локна переключаются в медиальном коленчатом теле таламуса и нижних буграх четверохолмия. К специфической проводящей сис­теме относятся проводящие пути зрительного и вестибу­лярного анализаторов. Импульсы по специфическим вос­ходящим путям поступают в корковый конец соответствующего анализатора (зрительного, слухового и т.д.).

2. Неспецифические (экстралелтисковые) восходящие пути пере­ключаются в неспецифических (интраламинарных и ретикулярном) ядрах таламуса. В основном это волокна латерального спиноталамического и спиноретикулярного трактов, проводящих темпера­турную и болевую чувствительность. Импульсация от них проеци­руется в различные области коры (особенно лобную орбитальную кору). Неспецифическая система получает коллатеральные волокна от специфической системы, что обеспечивает связь этих двух восхо­дящих систем. Функциональной особенностью неспецифической системы является относительно медленное проведение возбужде­ния. Рецептивные поля нейронов большие, нейроны гюлимодаль-ные, связанные с несколькими видами чувствительности, топогра­фия проекции периферии в центрах не выражена.

3. Часть афферентной импульсации поступает в мозжечок по другим системам. Через ствол мозга в мозжечок проходят задний спинно-мозжечковый тракт Флексига и передний спинно-мозжечковый тракт Говерса, проводящие импульсацию от рецепто­ров мышц и связок, а также вестибуломозжечковый тракт, несу­щий информацию от вестибулярных рецепторов. Из коры моз­жечка информация передается в вентральные ядра таламуса, далее она проецируется в соматосенсорную, моторную и премоторные зоны коры большого мозга.Б. Нисходящие проводниковые пути ствола мозга включают двигательные пирамидные пути, начинающиеся от клеток Беца коры прецентральной извилины. Они иннервируют мотонейро­ны передних рогов спинного мозга (кортикоспинальные пути), мотонейроны двигательных ядер черепных нервов (кортикобульбарный путь), обеспечивая произвольные сокращения мышц конечностей, туловища, шеи и головы. Моторные центры ствола мозга и их пути - важнейший компонент экстрапирамид­ной системы, основной функцией которой является регуляция мышечного тонуса, позы и равновесия. К этой системе на уровне ствола мозга относятся кортикорубральный и кортикоретику-лярный тракты, оканчивающиеся на моторных центрах ствола, от которых идут рубро-, ретикуло- и вестибулоспинальный пути. Экстрапирамидная система представляет собой совокупность ядер ствола мозга внепирамидной системы. Ее основными эле­ментами являются: полосатое тело, бледный шар, красное ядро, ретикулярная формация.

В стволе мозга проходят нисходящие пути, обеспечивающие двигательные функции мозжечка; к ним относится кортико-мостомозжечковый путь, по которому в мозжечок поступает импульсация от двигательной и других областей коры. Обработан­ная в коре мозжечка и его ядрах информация поступает на мотор­ные ядра ствола (красное, вестибулярные, ретикулярные). Через ствол мозга проходит начинающийся в четверохолмии тектоспинальный тракт, который обеспечивает двигательные реакции ор­ганизма в ориентировочных зрительных и слуховых рефлексах. Все двигательные реакции организма осуществляются нисходя­щими системами с помощью а- и у-мотонейронов спинного мозга и нейронов двигательных ядер черепных нервов.

МОЗЖЕЧОК

Мозжечок расположен позади полушарий большого мозга, над продолговатым мозгом и мостом. В совокупности с послед­ним он образует задний мозг. Мозжечок включает в себя более половины всех нейронов ЦНС, хотя составляет 10% массы го­ловного мозга. Это свидетельствует о больших возможностях обработки информации мозжечком. Он играет важную роль в интеграции двигательных и вегетативных реакций, в частности в координации произвольных и непроизвольных движений, под­держании равновесия, регуляции мышечного тонуса.

А. Функциональная организация. Выделяют три структуры мозжечка, отражающие эволюцию его функций:

Древний мозжечок (архицеребеллум) состоит из клочка и узелка (флоккулонодулярная доля) и нижней части червя; имеет наиболее выраженные связи с вестибулярной системой, поэтому его называют также вестибулярным мозжечком;

Старый мозжечок (палеоцеребеллум) включает верхнюю часть червя, парафлоккулярный отдел, пирамиды и язычок; полу­чает информацию преимущественно от проприорецепторов. Его называют также спинальным мозжечком;

Новый мозжечок (неоцеребеллум) состоит из двух полуша­рий. Он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых ре-цептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.

1. Межнейронные связи в коре полушарий мозжечка, его аф­ферентные входы и эфферентные выходы весьма разнообразны. Грушевидные нейроны (клетки Пуркинье) образуют средний -II (ганглиозный) слой коры, являющейся главной функциональ­ной единицей мозжечка. Структурной основой служат многочис­ленные ветвящиеся дендриты, на которых в одной клетке может быть до 100000 синапсов.

Клетки Пуркинье являются единственными эфферентными нейронами коры мозжечка и обеспечивают его связь с корой большого мозга, стволовыми образованиями и спинным мозгом. Эти клетки непосредственно связывают его кору с внутримозжечковыми и вестибулярными ядрами. В связи с этим функциональ­ное влияние мозжечка существенным образом зависит от актив­ности клеток Пуркинье.

Информация к клеткам Пуркинье (афферентные входы) по­ступает практически от всех рецепторов: мышечных, вестибуляр­ных, кожных, зрительных, слуховых; от нейронов основания зад­них рогов спинного мозга (по спинно-оливному пути), а также от двигательной коры головного мозга, ассоциативной коры и рети­кулярной формации.

На мозжечок передается влияние некоторых структур ствола головного мозга, например голубого пятна и ядер шва.

Преобладающее как прямое, так и опосредованное аффе­рентное влияние на клетки Пуркинье является возбуждающим. Но поскольку клетки Пуркинье являются тормозными нейрона­ми (медиатор ГАМК), то с их помощью кора мозжечка превра­щает возбуждающие сигналы на входе в тормозные сигналы на выходе. Таким образом, эфферентное влияние коры мозжечка на последующее нейронное звено (в основном это внутримозжечковые ядра) является тормозным. Под II слоем коры (под клетками Пуркинье) лежит грануляр­ный (III) слой, состоящий из клеток-зерен, число которых дости­гает 10 млрд. Аксоны этих клеток поднимаются вверх, Т-образно делятся на поверхности коры, образуя дорожки контактов с клет­ками Пуркинье. Здесь же лежат клетки Гольджи.

Верхний (I) слой коры мозжечка - молекулярный, состоит из параллельных волокон, разветвлений дендритов и аксонов II и III слоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обеспечивают взаимодейст­вие клеток Пуркинье.

Стимуляция верхнего слоя коры мозжечка приводит к дли­тельному (до 200 мс) торможению активности клеток Пуркинье. Такое же их торможение возникает при световых и звуковых сиг­налах. Суммарные изменения электрической активности коры мозжечка на раздражение чувствительного нерва любой мышцы вызывают торможение активности коры (гиперполяризация клеток Пуркинье), которое наступает через 15-20 мс и длится 20-30 мс, после чего возникает волна возбуждения, длящаяся до 500 мс (деполяризация клеток Пуркинье).

Фоновая импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота гене­рации импульсов этих клеток колеблется от 20 до 200 в секунду.

2. Подкорковая система мозжечка включает три функциональ­но разных ядерных образования: ядро шатра, пробковидное, ша­ровидное и зубчатое ядра.

Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и ретикулярной формацией продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

На пробковидное и шаровидное ядра проецируется промежу­точная кора мозжечка. От них связи идут в средний мозг к крас­ному ядру, далее в спинной мозг по руброспинальному пути.

Зубчатое ядро получает информацию от латеральной зоны ко­ры мозжечка, оно связано с таламусом, а через него - с моторной зоной коры большого мозга.

Клетки ядер мозжечка значительно реже генерируют импульсы (1-3 в секунду), чем клетки коры мозжечка (клетки Пуркинье -20-200 импульсов в секунду).

3. С соседними отделами мозга мозжечок соединяется тремя пара­ми ножек. Нижние мозжечковые ножки соединяют мозжечок с про­долговатым мозгом, средние - с мостом, верхние - со средним моз­гом. По проводящим путям ножек мозжечок получает афферент­ную импульсацию (входы) от других отделов мозга и посылает эфферентные импульсы (выходы) к различным структурам мозга.

Через верхние ножки сигналы идут в таламус, мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего моз­га. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга. Через нижние ножки мозжечка сигналы идут в про­долговатый мозг, к его вестибулярным ядрам, оливам, ретикуляр­ной формации.

Афферентная импульсация в кору мозжечка от кожных рецеп­торов, мышц, суставных оболочек, надкостницы поступает по так называемым спинно-мозжечковым трактам: заднему (дорсаль­ному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.

Ядра моста посылают афферентные пути в мозжечок, обра­зующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и голубым пят­ном среднего мозга существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбра­сывать норадреналин в межклеточное пространство коры моз­жечка, тем самым гуморально изменяют состояние возбудимости его клеток.

Рассмотренная структурно-функциональная организация ней­ронов мозжечка позволяет понять соматические и вегетативные его функции.

Б, Двигательные функции мозжечка состоят в регуляции мы­шечного тонуса, позы и равновесия, координации выполняемого целенаправленного движения, программировании целенаправ­ленных движений.

1. Мышечный тонус и поза регулируются преимущественно древним мозжечком (флоккулонодулярная доля) и частично ста­рым мозжечком, входящими в медиальную червячную зону. По­лучая и обрабатывая импульсацию от вестибулярных рецепто­ров, от приорецепторов аппарата движения и рецепторов кожи, от зрительных и слуховых рецепторов, мозжечок способен оце­нить состояние мышц, положение тела в пространстве и через ядра шатра, используя вестибуло-, ретикуло- и руброспинальный тракты, произвести перераспределение мышечного тонуса, изменить позу тела и сохранить равновесие. Нарушение равно­весия является наиболее характерным симтомом поражения ар-хицеребеллума.

2. Координация выполняемого движения осуществляется ста­рым и новым мозжечком, входящим в промежуточную (око­лочервячную) зону. В кору этой части мозжечка поступает им­пульсация от проприорецепторов, а также импульсация от мо-торной коры большого мозга, представляющая собой програм­му произвольного движения. Анализируя информацию о про­грамме и выполнении движения (от проприорецепторов), моз­жечок способен через свое промежуточное ядро, имеющее выхо­ды на красное ядро и моторную кору, осуществить коорди­нацию позы и выполняемого целенаправленного движения в пространстве, а также исправить направление движения. На­пример, подходя к двери, мы поднимаем руку, чтобы нажать кнопку звонка. Вначале наше движение носит ориентировочный характер; мы так же поднимали бы руку, чтобы поправить при­ческу, надеть очки. Однако на каком-то этапе это движение ста­новится только движением к кнопке, и, чтобы палец попал именно на кнопку, нужна определенная согласованность действий мышц-антагонистов, причем тем большая, чем ближе цель движе­ния. Внешне движение к цели идет по прямой, без резких изгибов траектории, но эта внешняя «гладкость» движения требует по­стоянного перераспределения «внимания» центральных регуляторных аппаратов с одной группы мышц на другую. Нарушение координации движения является наиболее характерным сим­птомом нарушения функции промежуточной зоны мозжечка.

3. Мозжечок участвует в программировании движений, что осу­ществляется его полушариями. Кора мозжечка получает импульса-цию преимущественно из ассоциативных зон коры большого мозга через ядра моста. Эта информация характеризует замысел движе­ния. В коре нового мозжечка она перерабатывается в программу движения, которая в виде импульсов вновь поступает через таламус в премоторную и моторную ко"ру и из нее через пирамидную и экс­трапирамидную системы - к мышцам. Контроль и коррекция более медленных программированных движений осуществляются моз­жечком на основе обратной афферентации преимущественно от проприорецепторов, а также от вестибулярных, зрительных, так­тильных рецепторов. Коррекция быстрых движений из-за малого времени их выполнения осуществляется путем изменения их про­граммы в самом мозжечке, т.е. на основе обучения и предшест­вующего опыта. К таким движениям относятся многие спортивные упражнения, печатание на пишущей машинке, игра на музыкаль­ных инструментах.

В. Двигательные функции мозжечка играют важную роль в ре­гуляции мышечного тонуса, сохранении позы, координации вы­полняемых движений, в программировании планируемых движе­ний. Если мозжечок не выполняет своей регуляторной функции, то у человека наблюдаются расстройства двигательных функций. Эти расстройства проявляются различными симптомами, которые связаны друг с другом.

1. Дистопия (distonia - нарушение тонуса) - повышение или понижение тонуса мышц. При повреждении мозжечка наблюдает­ся повышение тонуса мышц-разгибателей. Характер влияния на тонус мышц определяется частотой генерации импульсов нейро­нов ядра шатра. При высокой частоте (30-300 имп/с) тонус мышц-разгибателей снижается, при низкой (2-10 имп/с) - увеличивается. В случае повреждения мозжечка активируются нейроны вестибу­лярных ядер и ретикулярной формации продолговатого мозга, которые активируют мотонейроны спинного мозга. Одновремен­но активность пирамидных нейронов снижается, а, следовательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от продолговато­го мозга при одновременном уменьшении тормозных влияний от коры большого мозга, мотонейроны спинного мозга активируют­ся и вызывают гипертонус мышц-разгибателей.

2. Астения (astenia - слабость) - снижение силы мышечного со­кращения, быстрая утомляемость мышц.

3. Астазия (astasia, от греч. а - не, stania - стояние) - утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение.

4. Тремор (tremor - дрожание) - дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении.

5.Дисметрия (dismetria - нарушение меры) - расстройство рав­номерности движений, выражающееся либо в излишнем, либо в недостаточном движении. Больной пытается взять предмет со стола и проносит руку мнмо предмета (гиперметрия) или не доно­сит ее до предмета (гипометрия).

6. Атаксия (ataksia, от греч. а - не, 1taksia - порядок) - нарушение координации движений. Здесь ярче всего проявляется невозмож­ность выполнения движений в нужном порядке, в определенной последовательности. Проявлениями атаксии являются также адиадохокинез, асинергия, пьяная - шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз-вверх. При асинергии мышц он не способен сесть из положения, лежа без по­мощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону.

7. Дизартрия (disartria- расстройство организации речевой мо­торики). При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (скан­дированная речь).

Данные о том, что повреждение мозжечка ведет к расстрой­ствам движений, которые были приобретены человеком в резуль­тате обучения, позволяют сделать вывод, что само обучение идет с участием мозжечковых структур, а следовательно, мозжечокпринимает участие в организации процессов высшей нервной дея­тельности. При повреждении мозжечка страдают когнитивные процессы.

После операции частичного удаления мозжечка возникают симптомы его повреждения, которые затем исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функ­ция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга ком­пенсирует расстройства, вызываемые повреждением мозжечка. Механизм данной компенсации реализуется через лобно-мосто-мозжечковый тракт.

Г. Мозжечок за счет своего влияния на сенсомоторную область коры может изменять уровень тактильной, температурной, зри­тельной чувствительности.

Удаление мозжечка приводит к ослаблению силы процессов возбуждения и торможения, нарушению баланса между ними, развитию инертности. Выработка двигательных условных реф­лексов после удаления мозжечка затрудняется, особенно при формировании локальной, изолированной двигательной реак­ции. Точно так же замедляется выработка пищевых условных рефлексов, увеличивается скрытый (латентный) период их вы­зова.

5.7. ПРОМЕЖУТОЧНЫЙ МОЗГ

Промежуточный мозг расположен между сред­ним и конечным мозгом, вокруг III желудочка мозга. Он состоит из таламической области и гипоталамуса. Таламическая область включает в себя таламус, метаталамус (коленчатые тела) и эпиталамус (эпифиз). В литературе, посвященной вопросам физиологии, метаталамус объединяется с таламусом, эпифиз рассмат­ривается в эндокринной системе.

Таламус - парный ядерный комплекс, занимающий преимущественно дорсальную часть промежуточного мозга. В таламусе выделяют до 40 парных ядер, ко­торые в функциональном плане можно разделить на следующие три группы: релейные, ассоциативные и неспецифические. Все яд­ра таламуса в разной степени обладают тремя общими функция­ми: переключающей, интегративной и модулирующей.

А. Переключательные ядра таламуса (релейные, специфиче­ские) делят на сенсорные и несенсорные.

1. Главной функцией сенсорных ядер является переключение потоков афферентной импульсации в сенсорные зоны коры большого мозга. Наряду с этим происходят перекодирование и обра­ботка информации. Главные сенсорные ядра следующие.

Вентральные задние ядра являются главным реле для переклю­чения соматосенсорной афферентной системы. В них переключа­ются тактильная, проприоцептивная, вкусовая, висцеральная, частично температурная и болевая чувствительность. В этих яд­рах имеется топографическая проекция периферии, поэтому элек­тростимуляция вентральных задних ядер вызывает парастезии (ложные ощущения) в разных частях тела, иногда нарушение «схемы тела» (искаженное восприятие частей тела).

Латеральное коленчатое тело выполняет функции реле для пере­ключения зрительной импульсации в затылочную кору, где она ис­пользуется для формирования зрительных ощущений. Кроме корко­вой проекции часть зрительной импульсации направляется в верхние холмики четверохолмия. Эта информация используется для регуля­ции движения глаз, в зрительном ориентировочном рефлексе.

Медиальное коленчатое тело является реле для переключения слуховой импульсации в височную кору задней части сильвие-вой борозды (извилина Гешля, или поперечная височная изви­лина).

2. К несенсорным переключательным ядрам таламуса относятся передние и вентральные ядра. Они переключают в кору несенсор­ную импульсацию, поступающую в таламус из разных отделов головного мозга. В передние вентральное, медиальное и дорсаль­ное ядра импульсация поступает из гипоталамуса. Передние ядра таламуса рассматриваются как часть лимбической системы и иног­да обозначаются как «лимбические ядра таламуса».

Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию. В них переключается нмпуль-сация от базальных ганглиев, зубчатого ядра мозжечка, красного ядра среднего мозга, которая после этого проецируется в мотор­ную и премоторную кору.

Наряду с корковыми проекциями переключательных ядер каж­дое из них получает нисходящие корковые волокна из той же про­екционной зоны, что создает структурную основу для взаиморегулирующих отношений между таламусом и корой

Б. Ассоциативные ядра таламуса включают ядра подушки, медиодорсальное ядро и латеральные ядра. Во­локна к этим ядрам приходят не от проводниковых путей анали­заторов, а от других ядер таламуса. Эфферентные выходы от этих ядер направляются главным образом в ассоциативные поля коры. В свою очередь кора мозга посылает волокна к ассоциативным ядрам, регулируя их функцию. Главной функцией этих ядер явля­ется интегративная функция, которая выражается в объединениидеятельности как таламических ядер, так и различных зон ассо­циативной коры полушарий мозга.

Подушка получает главные входы от коленчатых тел и неспе­цифических ядер таламуса. Эфферентные пути от нее идут в ви-сочно-теменно-затылочные зоны коры, участвующие в гностиче­ских (узнавание предметов, явлений), речевых и зрительных функ­циях (например, в интеграции слова со зрительным образом), а также в восприятии «схемы тела».

В латеральные ядра поступает зрительная и слуховая импульса-ция от коленчатых тел и соматосенсорная импульсация от вен­трального ядра. Интегрированная сенсорная информация от этих источников далее проецируется в ассоциативную теменную кору и используется в ее функции гнозиса, праксиса, формировании «схе­мы тела».

Медиодорсальное ядро получает импульсацию от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассо­циативную лобную и лимбическую кору. Оно участвует в форми­ровании эмоциональной и поведенческой двигательной активно­сти, а также, возможно, в образовании памяти.

В. Неспецифические ядра составляют эволюционно более древ­нюю часть таламуса, ее ядра содержат преимущественно мелкие, многоотростчатые нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. В неспецифи­ческие ядра поступает импульсация от других ядер таламуса по трактам, проводящим преимущественно болевую и температурную чувствительность. В неспецифические ядра непосредственно или через ретикулярную формацию также поступает часть импульсации по коллатералям от всех специфических сенсорных систем. Кроме того, в неспецифические ядра приходит импульсация из моторных центров ствола (красное ядро, черное вещество), ядер мозжечка, от базальных ганглиев и гиппокампа, а также от коры мозга, особенно лобных долей. Неспецифические ядра имеют эфферентные выходы на другие таламические ядра, кору больших полушарий как непо­средственно, так и через ретикулярные ядра, а также нисходящие пути к другим структурам ствола мозга, т. е. эти ядра, как и другие отделы ретикулярной формации, оказывают восходящие и нисхо­дящие влияния.

Неспецифические ядра таламуса выступают в роли интегри­рующего посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями - с другой, объединяя их в единый функциональный комплекс. На кору мозга неспецифический таламус оказывает пре­имущественно модулирующее влияние. Разрушение неспецифических ядер не вызывает грубых расстройств эмоций, восприятия, сна и бодрствования, образования условных рефлексов, а нарушает только тонкую регулировку поведения.

Гипоталамус - это вентральная часть промежуточного мозга, макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. В гипоталамусе выделяют до 48 парных ядер, которые подразделяются разными авторами на 3-5 групп.

Гипоталамус - многофункциональная система, обладающая ши­рокими регулирующими и интегрирующими влияниями. Однако важнейшие функции гипоталамуса трудно соотнести с его отдельны­ми ядрами. Как правило, отдельно взятое ядро имеет несколько функций. В связи с этим физиология гипоталамуса рассматривается обычно в аспекте функциональной специфики его различных облас­тей и зон. Гипоталамус является важнейшим центром интеграции вегетативных функций, регуляции эндокринной системы, теплового баланса организма, цикла «бодрствование - сон» и других биорит­мов; велика его роль в организации поведения (пищевого, полового, агрессивно-оборонительного), направленного на реализацию биоло­гических потребностей, в проявлении мотиваций и эмоций.

БАЗАЛЫ1ЫЕ ГАНГЛИИ

Назальные ганглии расположены в основании больших полу­шарий и включают три парных образования: бледный шар, филогенетически более позднее образование - полоса­тое тело и наиболее молодую часть - ограду. Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело включает хвостатое и скорлупу.

А. Функциональные связи базальных ганглиев. Афферентная импульсация в базальные ганглии поступает преимущественно в полосатое тело в основном из трех источников: 1) от всех облас­тей коры непосредственно и через таламус; 2) от черного вещест­ва; 3) от неспецифических ядер таламуса.

Среди эфферентных связей базальных ганглиев можно отме­тить три выхода:

От полосатого тела пути идут к бледному шару. От бледного шара начинается самый важный эфферентный тракт базальных ганглиев в таламус, в его релейные вентральные ядра, от них воз­буждающий путь идет в двигательную кору;

Часть эфферентных волокон из бледного шара и полосатого тела следует к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оли­ву в мозжечок;

От полосатого тела тормозящие пути идут к черному вещест­ву и после переключения - к ядрам таламуса.

Базальные ганглии являются промежуточным звеном (стан­цией переключения), связывающим ассоциативную и частично сенсорную кору с двигательной корой. Рассмотрим функции от­дельных структур базальных ганглиев.

Б. Функции полосатого тела. 1. Полосатое тело оказывает на бледный шар двоякое влияние - возбуждающее и тормозящее с преобладанием последнего, что осуществляется преимущественно через тонкие тормозные волокна (медиатор ГАМК).

2. Полосатое тело оказывает тормозящее влияние (медиатор ГАМК) на нейроны черного вещества которые в свою очередь оказывают модулирующее влияние (медиатор дофамин) на кортикостриарные каналы связи.

3. Влияние на кору большого мозга: раздражение полосатого тела вызывает синхронизацию ЭЭГ - появление в ней высокоамплитуд­ных ритмов, характерных для фазы медленного сна. Разрушение полосатого тела уменьшает время сна в цикле бодрствование - сон.

4. Стимуляция полосатого тела через хронически вживленные электроды вызывает относительно простые двигательные реак­ции: поворот головы и туловища в сторону, противоположную раздражению, иногда сгибание конечности на противоположной стороне. Стимуляция некоторых зон полосатого тела вызывает задержку текущей поведенческой деятельности - двигательной, ориентировочной, пищедобывательной. Животное как бы «за­стывает» в одной позе. При этом на ЭЭГ развиваются медленные высокоамплитудные ритмы. Раздражение некоторых точек поло­сатого тела приводит к подавлению ощущения боли.

При поражении стриарной системы возникает гипотониче-ски-гиперкинетический синдром, что обусловлено дефици­том тормозящего влияния стриатума на нижележащие двига­тельные центры, вследствие чего развиваются мышечная гипо­тония и избыточные непроизвольные движения (гиперкинезы). Гиперкинезы - автоматические чрезмерные движения, в которых участвуют отдельные части тела, конечности. Они возникают непроизвольно, исчезают во сне и усиливаются при произволь­ных движениях и волнении.

Отдельные виды гиперкинезов связывают с поражением опре­деленных структур стриарной системы. При поражении оральной части полосатого тела возникают насильственные движения в мускулатуре лица и шеи, при поражении средней части - в муску­латуре туловища и рук. Поражение каудальной части полосатого тела вызывает гиперкинезы в ногах. Конкретные симптомы пора­жения полосатого тела весьма разнообразны.

Атетоз - медленные червеобразные, вычурные движения в дистальных отделах конечностей (в кистях и стопах). Могут на­блюдаться в мускулатуре лица: выпячивание губ, перекашивание рта, гримасничанье, прищелкивание языком. Обычно атетоз свя­зывают с поражением крупных клеток стриарной системы. Харак­терным его признаком является образование преходящих кон­трактур (зразтиа глоЫН$), которые придают кисти и пальцам своеобразное положение. У детей нередко наблюдается двусто­ронний, двойной атетоз при подкорковых дегенерациях. Гемиатетоз бывает значительно реже.

Гемибаллизм - размашистые бросковые движения в конечно­стях, чаще всего в руках в виде взмаха «крыла птицы». Насильст­венные движения при гемибаллизме производятся с большой си­лой, их трудно прекратить. Возникновение гемибаллизма связы­вают с поражением подбугорного ядра (люисово тело), распо­ложенного под зрительным бугром.