Шкала электромагнитных волн. Шкала электромагнитных волн Биологическое действие радиоволнового излучения

в формуле сложения интенсивностей должно стоять среднее значение cos δ . Но это среднее значение за один период колебаний равно нулю. Следовательно, мы получим I = I 1 + I 2 , то есть интенсивность волны при сложении двух лучей равна сумме интенсивностей этих лучей, и интерференция отсутствует.

Отметим, что способность к интерференции является важнейшим признаком волнового процесса и составляет волновую природу света.

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН Электромагнитные волны представляют собой непрерывный ряд излу-

чений, простирающихся от радиоволн до γ – лучей. На рисунке ниже изображена шкала электромагнитных волн.

1010

10 12 10 14 10 16 10 18

Цифрами обозначены диапазоны частот электромагнитных волн:

1 – радиоволны; 2 – инфракрасные лучи; 3 – видимый свет; 4 – ультрафиолетовые лучи; 5 – рентгеновские и γ – лучи.

Видимый свет занимает диапазон примерно от 4·1014 до 8·1014 Гц. Видимый белый свет является суммой электромагнитных волн разных частот, каждая из которых вызывает ощущение от красного до фиолетового цвета по мере роста частоты (так называемых спектральных цветов : красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый).

Интерференция белого света приводит к появлению цветных максимумов, поскольку для каждой частоты имеется свое условие максимума интерференции. Примером может служить игра цветов на тонких пленках и на компактдисках.

Распространение белого света во многих случаях можно рассматривать, отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль прямых линий, называемых лучами. Именно благодаря лучу света у человечества сформировалось понятие прямой линии. Волновой своей природой свет обязан длине волны. Предположив, что в пределе длина волны λ → ∞, можно вполне строго объяснить отражение и преломление света, образование тени и другие явления, которые изучает геометрическая оптика. Таким образом, условие λ → ∞ является приближением геометрической оптики .

В приближении геометрической оптики свет за преградой не должен проникать в область геометрической тени. В действительности же световая волна распространяется во всем пространстве, проникая и в область геометрической тени. Это проникновение тем больше, чем меньше размер преграды или отверстия. При размерах преграды или отверстия, сравнимых с длиной волны, приближение геометрической оптики недопустимо. В силу вступает волновая оптика. Условие λ ≥ R , где R – размер преграды или отверстия, является приближением волновой оптики . Отклонения от закона прямолинейного распространения света и связанные с этим явления называют дифракцией .

При достаточно малых длинах волн свет способен проявлять свои

квантовые, корпускулярные, свойства. Условие λ ≤ hc , h – постоянная

E пор

Планка, а Епор – пороговая энергия, является приближением квантовой оптики . О квантовых свойствах света будет рассказано в следующей части лекций.

«Электромагнитные волны и их свойства» - Гамма-излучение - самое коротковолновое излучение. Длинные волны хорошо дифрагируют вокруг сферической поверхности Земли. Ультрокороткие волны. Средние волны. В 1901 году Рентген первым из физиков получил Нобелевскую премию. Излучается атомами и молекулами вещества. Самое высокоэнергетическое излучение.

«Электромагнитные волны урок» - http://elementy.ru/posters/spectrum. Ультрафиолетовое излучение. Гамма-излучение. К какому виду излучений принадлежат электромагнитные волны с длиной 0,1 мм? Укажите интервал длин волн видимого света в вакууме. Электромагнитная природа. Длина волны. Развитие естественно - научного миропонимания. 1. Ультрафиолетовое 2.Рентгеновское 3.Инфракрасное 4.?–Излучение.

«Трансформатор» - 17. 8. I1, I2 – сила тока в первичной и вторичной обмотках. Вспомните от чего и как зависит ЭДС индукции в катушке. Когда трансформатор повышает электрическое напряжение? 1. P2 =. Закон электромагнитной индукции. 15.

«Электромагнитное излучение» - Яйцо под излучением. Рекомендации: Снизить время общения по мобильному телефону. Исследование электромагнитного излучения сотового телефона. Влияние электромагнитных волн на живой организм. Мотыль, находившийся дво суток под излучением мобильного телефона. «Исследование электромагнитного излучения сотового телефона».

«Электромагнитное поле» - Представим себе проводник, по которому течет электрический ток. Что такое электромагнитная волна? Скорость электромагнитных волн в веществе v всегда меньше, чем в вакууме: v ‹ с. Но ведь заряд покоится лишь относительно определенной системы отсчета. Возникнет возмущение электромагнитного поля. Какова природа электромагнитной волны?

«Физика электромагнитные волны» - Что такое магнитное поле? ЭМ волна – поперечная! Распространение линейно поляризованной электромагнитной волны. Скорость ЭМ волны: Существование электромагнитных волн было предсказано М. Фарадеем в 1832. Что такое электромагнитное поле? Свойства ЭМ волн: Джеймс Клерк Максвелл. Повторение: Наличие ускорения – главное условие излучения ЭМ волн.

Всего в теме 17 презентаций

Причины ограничения волн по частое

Казалось бы, что должны существовать волны всех частот ($\nu $) от $\nu =0\ Гц$ до $\nu =\infty \ Гц.$ Однако так как световая волна обладает помимо волновых свойств корпускулярными свойствами, существуют некоторые ограничения. Квантовая теория утверждает, что электромагнитное излучение испускается в виде квантов (порций энергии). Энергия кванта (W) связана с его частотой выражением:

где $h=6,62\cdot {10}^{-34}Дж\cdot с$ -- постоянная Планка, $\hbar =\frac{h}{2\pi }=1,05\cdot {10}^{-34}Дж\cdot с$ - постоянная Планка с чертой. Из выражения (1) следует, что бесконечные частоты невозможны, так как не существует квантов с бесконечно большой энергией. Это же выражение накладывает ограничения на низкие частоты, так как существует минимальное значение ванта энергии ($W_0$), из чего следует, что минимальная частота (${\nu }_0$) равна:

Примечание 1

Надо сказать, что по сей день в физике не доказано существование нижней границы энергии фотонов. Минимальная частота порядка 8 Гц наблюдается в стоячих электромагнитных волн ах между ионосферой и земной поверхностью.

Шкала электромагнитных волн

Все известные на сегодняшний день электромагнитные волны разделяют на:

Рисунок 1.

Каждый из диапазонов имеет свои особенности. С ростом частоты увеличивается проявление корпускулярных свойств излучения. Волны разных частей спектра различны способами генерации. Каждый диапазон волн изучает свой раздел физики. Данные участки спектра отличаются не физической природой, а способом их получения и приема. Между данными видами волн не существует резких переходов, участки могут перекрываться, границы являются условными.

Видимую часть спектра электромагнитных волн в совокупности с зоной ультрафиолетового и инфракрасного излучения исследуют в оптике (так называемый оптический диапазон). Кванты излучения видимого диапазона называются фотонами. Их энергия заключена в интервале:

Волновые и квантовые свойства имеются у всего спектра электромагнитного излучения, но в зависимости от длины волны один вид свойств превалирует по значимости над другим, соответственно, применяются различные в методы их исследования. В зависимости от длины волны разные группы волн имеют различные виды практического применения.

Особенности разных видов электромагнитного излучения

Особенностями оптического диапазона являются:

  • выполнение законов геометрической оптики,
  • слабое взаимодействие света с веществом.

Примечание 2

Для частот ниже, чем оптический диапазон перестают действовать законы геометрической оптики, тогда как электромагнитное поле высоких частот либо проходит сквозь вещество, либо разрушает его. Видимый свет, является необходимым условием жизни на Земле, так как является обязательным условием для фотосинтеза.

Радиоволны применяются для радиосвязи, телевидения, радиолокации. Это самые длинные волны из спектра электромагнитных волн. Радиоволны легко искусственно генерировать при помощи колебательного контура (соединения ёмкости и индуктивности). Атомы и молекулы способны излучать радиоволны, что используют в радиоастрономии. В самом общем вид, следует отметить, что излучателем электромагнитных волн являются ускоренно движущиеся заряженные частицы, находящиеся в атомах и ядрах.

Инфракрасную область спектра впервые экспериментально была изучена в 1800 г. В. Гершелем . Ученый поместил термометр за красным краем спектра и зафиксировал повышение температуры, что означало нагревание термометра невидимым глазу излучением. Инфракрасное излучение испускают любые нагретые тела. Используя специальные средства инфракрасное излучение можно превратить в видимый свет. Так получают изображения нагретых тел в темноте. Инфракрасное излучение используют для сушки чего -- либо.

Ультрафиолетовое излучение открыл И. Риттер. Он обнаружил, что за фиолетовым краем спектра существуют лучи, невидимые глазу, которые воздействуют на некоторые химические соединения. Оно способно убивать болезнетворных бактерий, из-за этого его широко используют в медицине. Ультрафиолетовое излучение в составе солнечных лучей воздействует на кожу человека, вызывая ее потемнение (загар).

Рентгеновские лучи обнаружены В. Рентгеном в 1895 г. Они невидимы глазом, проходят без существенного поглощения через большие слои вещества, которые непрозрачны для видимого света. Обнаруживаются рентгеновские лучи по способности вызывать свечение некоторых кристаллов и воздействовать на фотопленку. Эти лучи используются в частности в медицинской диагностике. Рентгеновское излучение имеет сильное биологическое действие.

Определение 1

Гамма- излучение -- это излучение, которое испускают возбужденные атомные ядра и взаимодействующие элементарные частицы. Это самое коротковолновое излучение. У него самые ярко выраженные корпускулярные свойства. Обычно гамма- излучение рассматривается как поток гамма -- квантов. В области длин волн порядка ${10}^{-10}-{10}^{-14}м$ диапазоны гамма излучения и рентгеновский перекрываются.

Пример 1

Задание: Что является излучателем для различных видов электромагнитных волн?

Решение:

Излучателем электромагнитных волн всегда являются движущиеся заряженные частицы. В атомах и ядрах эти частицы движутся ускоренно, значит, являются источниками электромагнитных волн. Радио волны излучают атомы и молекулы. Это единственный тип волн, которые можно искусственно генерировать, используя колебательный контур. Инфракрасное излучение получается в основном за счет колебаний атомов в молекулах. Эти колебания носят название тепловых, так как порождаются тепловыми столкновениями молекул. С увеличением температуры частота колебаний увеличивается.

Видимые лучи генерируются отдельными возбуждёнными атомами.

Ультрафиолетовый свет, также относят к атомарному.

Рентгеновские лучи излучаются за счет того, что электроны, обладающие высокой кинетической энергией, взаимодействуют с атомами и ядрами атомов или ядра атомов сами излучают за счет собственного возбуждения.

Гамма - лучи генерируются возбужденными ядрами атомов и возникают при взаимодействии и взаимных превращениях элементарных частиц.

Пример 2

Задание: Чему равны частоты волн видимого диапазона?

Решение:

Видимый диапазон -- совокупность волн, которые воспринимает человеческий глаз. Границы этого диапазона зависят от индивидуальных особенностей зрения человека, и находится примерно в пределах $\lambda =0,38-0,76\ мкм.$

В оптике используют два вида частот. Круговую частоту ($\omega $), которая определяется как:

\[\omega =\frac{2\pi }{T}\left(2.1\right),\]

где $T$ -- период колебаний волны. Также используют частоту $\nu $, которая связывается с периодом колебаний как:

\[\nu =\frac{1}{T}\left(2.2\right).\]

Следовательно, обе частоты связаны между собой соотношением:

\[\omega =2\pi \nu \left(2.3\right).\]

Зная, что скорость распространения электромагнитных волн в вакууме равна $c=3\cdot {10}^8\frac{м}{с}$, имеем:

\[\lambda =cT\to T=\frac{\lambda }{c}\left(2.4\right).\]

В таком случае для границ видимого диапазона получим:

\[\nu =\frac{c}{\lambda },\ \omega =2\pi \frac{c}{\lambda }.\]

Используя то, что длины волн для видимого света нам известны, получим:

\[{\nu }_1=\frac{3\cdot {10}^8}{0,38\cdot {10}^{-6}}=7,9\cdot {10}^{14}\left(Гц\right),\ {\nu }_2=\frac{3\cdot {10}^8}{0,76\cdot {10}^{-6}}=3,9\cdot {10}^{14}\left(Гц\right).\] \[{\omega }_1=2\cdot 3,14\cdot 7,9\cdot {10}^{14}=5\cdot {10}^{15}\left(с^{-1}\right),{\omega }_1=2\cdot 3,14\cdot 3,9\cdot {10}^{14}=2,4\cdot {10}^{15}\left(с^{-1}\right).\ \]

Ответ: $3,9\cdot {10}^{14}Гц

Длины электромагнитных волн, которые могут быть зарегистрированы приборами, лежат в очень широком диапазоне. Все эти волны обладают общими свойствами: поглощение, отражение, интерференция, дифракция, дисперсия. Свойства эти могут, однако, проявляться по-разному. Различными являются источники и приемники волн.

Радиоволны

ν =10 5 - 10 11 Гц, λ =10 -3 -10 3 м.

Получают с помощью коле­бательных контуров и макро­скопических вибраторов. Свойства. Радиоволны различных ча­стот и с различными длинами волн по-разному поглощаются и отражаются средами. Применение Радиосвязь, телевидение, радиолокация. В природе радиоволны излучаются различными внеземными источниками (ядра галактик, квазары).

Инфракрасное излучение (тепловое)

ν =3-10 11 - 4 . 10 14 Гц, λ =8 . 10 -7 - 2 . 10 -3 м.

Излучается атомами и мо­лекулами вещества.

Инфракрасное излучение дают все тела при любой тем­пературе.

Человек излучает электро­магнитные волны λ≈9 . 10 -6 м.

Свойства

  1. Проходит через некото­рые непрозрачные тела, а так­же сквозь дождь, дымку, снег.
  2. Производит химическое действие на фотопластинки.
  3. Поглощаясь веществом, нагревает его.
  4. Вызывает внутренний фотоэффект у германия.
  5. Невидимо.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение . Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

Свойства . В оздействует на глаз.

(меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых T>1000°С, а также светящимися парами ртути.

Свойства . Высокая химическая активность (разложение хлорида сереб­ра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в неболь­ших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздей­ствие: изменения в развитии клеток и обмене веществ, действие на глаза.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р= 10 -3 -10 -5 Па) ускоряются электриче­ским полем при высоком напряжении, достигая анода, при со­ударении резко тормозятся. При торможении электроны движут­ся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 им). Свойства Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облуче­ние в больших дозах вызывает лучевую болезнь. Применение . В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

γ-излучение

Источники : атомное ядро (ядерные реакции). Свойства . Имеет огромную проникающую способность, оказывает силь­ное биологическое воздействие. Применение . В медицине, производстве (γ -дефектоскопия). Применение . В медицине, в промышленности.

Общим свойством электромагнитных волн является также то, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свой­ства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.