Умножение корней: основные правила. Корень степени n: основные определения Арифметические операции с корнями


Преобразование выражений с корнями и степенями часто требует выполнения переходов от корней к степеням и обратно. В этой статье мы разберем, как такие переходы осуществляются, что лежит в их основе, и в каких моментах чаще всего возникают ошибки. Все это снабдим характерными примерами с детальным разбором решений.

Навигация по странице.

Переход от степеней с дробными показателями к корням

Возможность перехода от степени с дробным показателем к корню диктуется самим определением степени. Напомним, как определяется : степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называют корень n-ой степени из a m , то есть, где a>0 , m∈Z , n∈N . Аналогично определяется и дробная степень нуля , с той лишь разницей, что в этом случае m уже считается не целым, а натуральным, чтобы не возникало деления на нуль.

Таким образом, степень всегда можно заменить на корень . Например, от можно перейти к , а степень можно заменить корнем . А вот переходить от выражения к корню не следует, так как степень изначально не имеет смысла (степень отрицательных чисел не определена), несмотря на то, что корень имеет смысл.

Как видите, в переходе от степеней чисел к корням нет абсолютно ничего мудреного. Аналогично осуществляется переход к корням от степеней с дробными показателями, в основании которых находятся произвольные выражения. Заметим, что указанный переход осуществляется на ОДЗ переменных для исходного выражения. К примеру, выражение на всей ОДЗ переменной x для этого выражения можно заменить корнем . А от степени перейти к корню , такая замена имеет место для любого набора переменных x , y и z из ОДЗ для исходного выражения.

Замена корней степенями

Возможна и обратная замена, то есть, замена корней на степени с дробными показателями . В ее основе также лежит равенство , которое в данном случае используется справа налево, то есть, в виде .

Для положительных a указанный переход очевиден. Например, можно заменить степенью , а от корня перейти к степени с дробным показателем вида .

А при отрицательных a равенство не имеет смысла, но корень при этом может иметь смысл. Например, корни и имеют смысл, но заменить их степенями и нельзя. Так можно ли их вообще преобразовать в выражения со степенями? Можно, если провести предварительные преобразования, заключающиеся в переходе к корням с неотрицательными числами под ними, которые потом и заменить степенями с дробными показателями. Покажем, в чем заключаются эти предварительные преобразования и как их провести.

В случае с корнем позволяют выполнить такие преобразования: . А так как 4 – положительное число, то последний корень можно заменить степенью . А во втором случае определение корня нечетной степени из отрицательного числа −a (при этом a – положительное), выражающееся равенством , позволяет корень заменить выражением , в котором кубический корень из двух уже можно заменить степенью, и оно примет вид .

Осталось разобрать, как заменяются корни, под которыми находятся выражения, на степени, содержащие эти выражения в основании. Здесь не стоит спешить с заменой на , буквой A мы обозначили некоторое выражение. Приведем пример, поясняющий, что под этим имеется в виду. Корень так и хочется заменить степенью , основываясь на равенстве . Но такая замена уместна лишь при условии x−3≥0 , а для остальных значений переменной x из ОДЗ (удовлетворяющих условию x−3<0 ) она не подходит, так как формула не имеет смысла для отрицательных a . Если обратить внимание на ОДЗ, то несложно заметить ее сужение при переходе от выражения к выражению , а помните, что мы договорились не прибегать к преобразованиям, сужающим ОДЗ.

Из-за такого неаккуратного применения формулы нередко возникают ошибки при переходе от корней к степеням. Например, в учебнике дано задание, представить выражение в виде степени с рациональным показателем, и приведен ответ , который вызывает вопросы, так как в условии не задано ограничение b>0 . А в учебнике присутствует переход от выражения , скорее всего через следующие преобразования иррационального выражения

к выражению . Последний переход также вызывает вопросы, так как сужает ОДЗ.

Возникает закономерный вопрос: «Как же правильно перейти от корня к степени для всех значений переменных из ОДЗ»? Такая замена проводится на базе следующих утверждений:


Прежде чем обосновать записанные результаты, приведем несколько примеров их использования для перехода от корней к степеням. Для начала вернемся к выражению . Его надо было заменять не на , а на (в данном случае m=2 – целое четное, n=3 – натуральное). Другой пример: .

Теперь обещанное обоснование результатов.

Когда m – целое нечетное, а n – натуральное четное, то для любого набора переменных из ОДЗ для выражения значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ). Поэтому, .

Переходим ко второму результату. Пусть m – целое положительное нечетное, а n – натуральное нечетное. Для всех значений переменных из ОДЗ, для которых значение выражения A неотрицательно, , а для которых отрицательно,

Аналогично доказывается следующий результат для целых отрицательных и нечетных m и натуральных нечетных n . Для всех значений переменных из ОДЗ, для которых значение выражения A положительно, , а для которых отрицательно,

Наконец, последний результат. Пусть m – целое четное, n – любое натуральное. Для всех значений переменных из ОДЗ, для которых значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ), . А для которых отрицательно, . Таким образом, если m – целое четное, n – любое натуральное, то для любого набора значений переменных из ОДЗ для выражения его можно заменить на .

Список литературы.

  1. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  2. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. – М.: Просвещение, 2009.- 336 с.: ил.- ISBN 979-5-09-016551-8.

Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой - калькулятором корней. Она поможет:

  • найти квадратные или кубические корни из заданных чисел;
  • выполнить математическое действие с дробными степенями.
Число знаков после запятой:

Как вычислять квадратный корень вручную -методом подбора находить подходящие значения. Рассмотрим, как это делать.

Что такое квадратный корень

Корень n степени натурального числа a - число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

Квадратным корнем из числа a будет число, квадрат которого равен a . Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

Проводим расчеты вручную

Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

Квадратные числа - числа, из которых можно извлечь корень без остатка. А множители - числа, которые при перемножении дают исходное число.

Например:

25, 36, 49 - квадратные числа, поскольку:


Получается, что квадратные множители - множители, которые являются квадратными числами.

Возьмем 784 и извлечем из него корень.

Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель - 4 x 4 = 16. Делим 784 на 16 получаем 49 - это тоже квадратное число 7 x 7 = 16.
Применим правило

Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

Ответ.

2.Неделимое. Его нельзя разложить на квадратные множители.

Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

Раскладываем число 252 на квадратный и обычный множитель.
Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки. Подкоренное число - 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

между 2 и 4.

Оцениваем значение Вероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76~7.

Вычисляем корень

Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

При делении в столбик получается максимально точный ответ при извлечении корня.

Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

— целую часть справа налево;

— число после запятой слева направо.

Пример: 3459842,825694 → 3 45 98 42, 82 56 94

795,28 → 7 95, 28

Допускается, что вначале остается непарное число.

Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

Извлеките из этого числа корень - √n. Запишите полученный результат сверху справа, а квадрат этого числа - снизу справа.

У нас первая 7. Ближайшее квадратное число - 4. Оно меньше 7, а 4 =

Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

Примечание: числа должны быть одинаковыми.

Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.
Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

Снесите следующую пару чисел и запишите возле полученной разницы слева.

Вычтите полученное справа произведение из числа слева.

Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение прочерками, подбираем множители для него и так далее.

Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

Алгоритм действий

1. Введите желаемое количество знаков после запятой.

2. Укажите степень корня (если он больше 2).

3. Введите число, из которого планируете извлечь корень.

4. Нажмите кнопку «Решить».

Вычисление самых сложных математических действий с онлайн калькулятором станет простым!.

Иррациональные выражения и их преобразования

В прошлый раз мы вспомнили (или узнали – кому как), что же такое , научились извлекать такие корни, разобрали по винтикам основные свойства корней и решали несложные примеры с корнями.

Этот урок будет продолжением предыдущего и будет посвящён преобразованиям самых разных выражений, содержащих всевозможные корни. Такие выражения называются иррациональными . Здесь появятся и выражения с буквами, и дополнительные условия, и избавление от иррациональности в дробях, и некоторые продвинутые приёмы в работе с корнями. Те приёмы, которые будут рассматриваться в данном уроке, станут хорошей базой для решения задач ЕГЭ (и не только) практически любого уровня сложности. Итак, давайте приступим.

Прежде всего я продублирую здесь основные формулы и свойства корней. Чтобы не скакать из темы в тему. Вот они:

при

Формулы эти надо обязательно знать и уметь применять. Причём в обе стороны – как слева направо, так и справа налево. Именно на них и основывается решение большинства заданий с корнями любой степени сложности. Начнём пока с самого простого – с прямого применения формул или их комбинаций.

Простое применение формул

В этой части будут рассматриваться простые и безобидные примеры – без букв, дополнительных условий и прочих хитростей. Однако даже в них, как правило, имеются варианты. И чем навороченнее пример, тем больше таких вариантов. И у неопытного ученика возникает главная проблема – с чего начинать? Ответ здесь простой – не знаешь, что нужно - делай что можно . Лишь бы ваши действия шли в мире и согласии с правилами математики и не противоречили им.) Например, такое задание:

Вычислить:

Даже в таком простеньком примере возможны несколько путей к ответу.

Первый – просто перемножить корни по первому свойству и извлечь корень из результата:

Второй вариант такой: не трогаем, работаем с . Выносим множитель из-под знака корня, а дальше - по первому свойству. Вот так:

Решать можно как больше нравится. В любом из вариантов ответ получается один – восьмёрка. Мне, например, проще перемножить 4 и 128 и получить 512, а из этого числа отлично извлекается кубический корень. Если кто-то не помнит, что 512 – это 8 в кубе, то не беда: можно записать 512 как 2 9 (первые 10 степеней двойки, я надеюсь, помните?) и по формуле корня из степени:

Другой пример.

Вычислить: .

Если работать по первому свойству (всё загнать под один корень), то получится здоровенное число, из которого корень потом извлекать – тоже не сахар. Да и не факт, что он извлечётся ровно.) Поэтому здесь полезно в числе вынести множители из-под корня. Причём вынести по максимуму:

И теперь всё наладилось:

Осталось восьмёрку и двойку записать под одним корнем (по первому свойству) и – готово дело. :)

Добавим теперь немного дробей.

Вычислить:

Пример совсем примитивный, однако и в нём имеются варианты. Можно с помощью вынесения множителя преобразовать числитель и сократить со знаменателем:

А можно сразу воспользоваться формулой деления корней:

Как видим, и так, и сяк – всяко правильно.) Если не споткнуться на полпути и не ошибиться. Хотя где тут ошибаться-то…

Разберём теперь самый последний пример из домашнего задания прошлого урока:

Упростить:

Совершенно немыслимый набор корней, да ещё и вложенных. Как быть? Главное – не бояться! Здесь мы первым делом замечаем под корнями числа 2, 4 и 32 – степени двойки. Первое что нужно сделать – привести все числа к двойкам: всё-таки чем больше одинаковых чисел в примере и меньше разных, тем проще.) Начнём отдельно с первого множителя:

Число можно упростить, сократив двойку под корнем с четвёркой в показателе корня:

Теперь, согласно корню из произведения:

.

В числе выносим двойку за знак корня:

А с выражением расправляемся по формуле корня из корня:

Значит, первый множитель запишется вот так:

Вложенные корни исчезли, числа стали поменьше, что уже радует. Вот только корни разные, но пока так и оставим. Надо будет – преобразуем к одинаковым. Берёмся за второй множитель.)

Второй множитель преобразовываем аналогично, по формуле корня из произведения и корня из корня. Где надо – сокращаем показатели по пятой формуле:

Вставляем всё в исходный пример и получаем:

Получили произведение целой кучи совершенно разных корней. Неплохо было бы привести их все к одному показателю, а там – видно будет. Что ж, это вполне возможно. Наибольший из показателей корней равен 12, а все остальные – 2, 3, 4, 6 – делители числа 12. Поэтому будем приводить все корни по пятому свойству к одному показателю – к 12:

Считаем и получаем:

Красивого числа не получили, ну и ладно. Нас просили упростить выражение, а не посчитать . Упростили? Конечно! А вид ответа (целое число или нет) здесь уже не играет никакой роли.

Немного сложения / вычитания и формул сокращённого умножения

К сожалению, общих формул для сложения и вычитания корней в математике нету. Однако, в заданиях сплошь и рядом встречаются эти действия с корнями. Здесь необходимо понимать, что любые корни – это точно такие же математические значки, как и буквы в алгебре.) И к корням применимы те же самые приёмы и правила, что и к буквам – раскрытие скобок, приведение подобных, формулы сокращённого умножения и т.п.

Например, каждому ясно, что . Точно так же одинаковые корни можно совершенно спокойно между собой складывать/вычитать:

Если корни разные, то ищем способ сделать их одинаковыми – внесением/вынесением множителя или же по пятому свойству. Если ну никак не упрощается, то, возможно, преобразования более хитрые.

Смотрим первый пример.

Найти значение выражения: .

Все три корня хоть и кубические, но из разных чисел. Чисто не извлекаются и между собой складываются/вычитаются. Стало быть, применение общих формул здесь не катит. Как быть? А вынесем-ка множители в каждом корне. Хуже в любом случае не будет.) Тем более что других вариантов, собственно, и нету:

Стало быть, .

Вот и всё решение. Здесь мы от разных корней перешли к одинаковым с помощью вынесения множителя из-под корня . А затем просто привели подобные.) Решаем дальше.

Найти значение выражения :

С корнем из семнадцати точно ничего не поделаешь. Работаем по первому свойству – делаем из произведения двух корней один корень:

А теперь присмотримся повнимательнее. Что у нас под большим кубическим корнем? Разность ква.. Ну, конечно! Разность квадратов:

Теперь осталось только извлечь корень: .

Вычислить:

Здесь придётся проявить математическую смекалку.) Мыслим примерно следующим образом: «Так, в примере произведение корней. Под одним корнем разность, а под другим – сумма. Очень похоже на формулу разности квадратов. Но… Корни – разные! Первый квадратный, а второй – четвёртой степени… Хорошо бы сделать их одинаковыми. По пятому свойству можно легко из квадратного корня сделать корень четвёртой степени. Для этого достаточно подкоренное выражение возвести в квадрат.»

Если вы мыслили примерно так же, то вы – на полпути к успеху. Совершенно верно! Превратим первый множитель в корень четвёртой степени. Вот так:

Теперь, ничего не поделать, но придётся вспомнить формулу квадрата разности. Только в применении к корням. Ну и что? Чем корни хуже других чисел или выражений?! Возводим:

«Хм, ну возвели и что? Хрен редьки не слаще. Стоп! А если вынести четвёрку под корнем? Тогда выплывет то же самое выражение, что и под вторым корнем, только с минусом, а ведь именно этого мы и добиваемся!»

Верно! Выносим четвёрку:

.

А теперь – дело техники:

Вот так распутываются сложные примеры.) Теперь пора потренироваться с дробями.

Вычислить:

Ясно, что надо преобразовывать числитель. Как? По формуле квадрата суммы, разумеется. У нас есть ещё варианты разве? :) Возводим в квадрат, выносим множители, сокращаем показатели (где надо):

Во как! Получили в точности знаменатель нашей дроби.) Значит, вся дробь, очевидно, равна единице:

Ещё пример. Только теперь на другую формулу сокращённого умножения.)

Вычислить:

Понятно, что квадрат разности надо в дело применять. Выписываем знаменатель отдельно и - поехали!

Выносим множители из-под корней:

Следовательно,

Теперь всё нехорошее великолепно сокращается и получается:

Что ж, поднимаемся на следующий уровень. :)

Буквы и дополнительные условия

Буквенные выражения с корнями – штука более хитрая, чем числовые выражения, и является неиссякаемым источником досадных и очень грубых ошибок. Перекроем этот источник.) Ошибки всплывают из-за того, что частенько таких заданиях фигурируют отрицательные числа и выражения. Они либо даны нам прямо в задании, либо спрятаны в буквах и дополнительных условиях . А нам в процессе работы с корнями постоянно надо помнить, что в корнях чётной степени как под самим корнем, так и в результате извлечения корня должно быть неотрицательное выражение . Ключевой формулой в задачах этого пункта будет четвёртая формула:

С корнями нечётной степени вопросов никаких – там всегда всё извлекается что с плюсом, что с минусом. И минус, если что, выносится вперёд. Будем сразу разбираться с корнями чётных степеней.) Например, такое коротенькое задание.

Упростить: , если .

Казалось бы, всё просто. Получится просто икс.) Но зачем же тогда дополнительное условие ? В таких случаях полезно прикинуть на числах. Чисто для себя.) Если , то икс – заведомо отрицательное число. Минус три, например. Или минус сорок. Пусть . Можно минус три возвести в четвёртую степень? Конечно! Получится 81. Можно из 81 извлечь корень четвёртой степени? А почему нет? Можно! Получится тройка. Теперь проанализируем всю нашу цепочку:

Что мы видим? На входе было отрицательное число, а на выходе – уже положительное. Было минус три, стало плюс три.) Возвращаемся к буквам. Вне всяких сомнений, по модулю это будет точно икс, но только сам икс у нас с минусом (по условию!), а результат извлечения (в силу арифметического корня!) должен быть с плюсом. Как получить плюс? Очень просто! Для этого достаточно перед заведомо отрицательным числом поставить минус.) И правильное решение выглядит так:

Кстати сказать, если бы мы воспользовались формулой , то, вспомнив определение модуля, сразу получили бы верный ответ. Поскольку

|x| = -x при x<0.

Вынести множитель за знак корня: , где .

Первый взгляд – на подкоренное выражение. Тут всё ОК. При любом раскладе оно будет неотрицательным. Начинаем извлекать. По формуле корня из произведения, извлекаем корень из каждого множителя:

Откуда взялись модули, объяснять, думаю, уже не надо.) А теперь анализируем каждый из модулей.

Множитель | a | так и оставляем без изменений: у нас нету никакого условия на букву a . Мы не знаем, положительное она или отрицательная. Следующий модуль | b 2 | можно смело опустить: в любом случае выражение b 2 неотрицательно. А вот насчёт | c 3 | – тут уже задачка.) Если , то и c 3 <0. Стало быть, модуль надо раскрыть с минусом : | c 3 | = - c 3 . Итого верное решение будет такое:

А теперь – обратная задача. Не самая простая, сразу предупреждаю!

Внести множитель под знак корня : .

Если вы сразу запишете решение вот так

то вы попали в ловушку . Это неверное решение ! В чём же дело?

Давайте вглядимся в выражение под корнем . Под корнем четвёртой степени, как мы знаем, должно находиться неотрицательное выражение. Иначе корень смысла не имеет.) Поэтому А это, в свою очередь, значит, что и, следовательно, само также неположительно: .

И ошибка здесь состоит в том, что мы вносим под корень неположительное число : четвёртая степень превращает его в неотрицательное и получается неверный результат – слева заведомый минус, а справа уже плюс. А вносить под корень чётной степени мы имеем право только неотрицательные числа или выражения. А минус, если есть, оставлять перед корнем.) Как же нам выделить неотрицательный множитель в числе , зная, что оно само стопудово отрицательное? Да точно так же! Поставить минус.) А чтобы ничего не поменялось, скомпенсировать его ещё одним минусом. Вот так:

И теперь уже неотрицательное число (-b) спокойно вносим под корень по всем правилам:

Этот пример наглядно показывает, что, в отличие от других разделов математики, в корнях правильный ответ далеко не всегда вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.) Особенно следует быть внимательнее со знаками в иррациональных уравнениях и неравенствах .

Разбираемся со следующим важным приёмом в работе с корнями – избавлением от иррациональности .

Избавление от иррациональности в дробях

Если в выражении присутствуют корни, то, напомню, такое выражение называется выражением с иррациональностью . В некоторых случаях бывает полезно от этой самой иррациональности (т.е. корней) избавиться. Как можно ликвидировать корень? Корень у нас пропадает при… возведении в степень. С показателем либо равным показателю корня, либо кратным ему. Но, если мы возведём корень в степень (т.е. помножим корень сам на себя нужное число раз), то выражение от этого поменяется. Нехорошо.) Однако в математике бывают темы, где умножение вполне себе безболезненно. В дробях, к примеру. Согласно основному свойству дроби, если числитель и знаменатель умножить (разделить) на одно и то же число, то значение дроби не изменится.

Допустим, нам дана вот такая дробь:

Можно ли избавиться от корня в знаменателе? Можно! Для этого корень надо возвести в куб. Чего нам не хватает в знаменателе для полного куба? Нам не хватает множителя , т.е. . Вот и домножаем числитель и знаменатель дроби на

Корень в знаменателе исчез. Но… он появился в числителе. Ничего не поделать, такова судьба.) Нам это уже не важно: нас просили знаменатель от корней освободить. Освободили? Безусловно.)

Кстати, те, кто уже в ладах с тригонометрией, возможно, обращали внимание на то, что в некоторых учебниках и таблицах, к примеру, обозначают по-разному: где-то , а где-то . Вопрос – что правильно? Ответ: всё правильно!) Если догадаться, что – это просто результат освобождения от иррациональности в знаменателе дроби . :)

Зачем нам освобождаться от иррациональности в дробях? Какая разница – в числителе корень сидит или в знаменателе? Калькулятор всё равно всё посчитает.) Ну, для тех, кто не расстаётся с калькулятором, разницы действительно практически никакой… Но, даже считая на калькуляторе, можно обратить внимание на то, что делить на целое число всегда удобнее и быстрее, чем на иррациональное . А уж про деление в столбик вообще умолчу.)

Следующий пример только подтвердит мои слова.

Как здесь ликвидировать квадратный корень в знаменателе? Если числитель и знаменатель помножить на выражение , то в знаменателе получится квадрат суммы. Сумма квадратов первого и второго чисел дадут нам просто числа безо всяких корней, что очень радует. Однако… всплывёт удвоенное произведение первого числа на второе, где корень из трёх всё равно останется. Не канает. Как быть? Вспомнить другую замечательную формулу сокращённого умножения! Где никаких удвоенных произведений, а только квадраты:

Такое выражение, которое при домножении какой-то суммы (или разности) выводит на разность квадратов , ещё называют сопряжённым выражением . В нашем примере сопряжённым выражением будет служить разность . Вот и домножаем на эту разность числитель и знаменатель:

Что тут можно сказать? В результате наших манипуляций не то что корень из знаменателя исчез – вообще дробь исчезла! :) Даже с калькулятором отнять корень из трёх от тройки проще, чем считать дробь с корнем в знаменателе. Ещё пример.

Освободиться от иррациональности в знаменателе дроби:

Как здесь выкручиваться? Формулы сокращённого умножения с квадратами сразу не катят – не получится полной ликвидации корней из-за того, что корень у нас в этот раз не квадратный, а кубический . Надо, чтобы корень как-то возвёлся в куб. Стало быть, применять надо какую-то из формул с кубами. Какую? Давайте подумаем. В знаменателе – сумма . Как нам добиться возведения корня в куб? Домножить на неполный квадрат разности ! Значит, применять будем формулу суммы кубов . Вот эту:

В качестве a у нас тройка, а в качестве b – корень кубический из пяти:

И снова дробь исчезла.) Такие ситуации, когда при освобождении от иррациональности в знаменателе дроби у нас вместе с корнями полностью исчезает сама дробь, встречаются очень часто. Как вам вот такой примерчик!

Вычислить:

Попробуйте просто сложить эти три дроби! Без ошибок! :) Один общий знаменатель чего стоит. А что, если попробовать освободиться от иррациональности в знаменателе каждой дроби? Что ж, пробуем:

Ух ты, как интересно! Все дроби пропали! Напрочь. И теперь пример решается в два счёта:

Просто и элегантно. И без долгих и утомительных вычислений. :)

Именно поэтому операцию освобождения от иррациональности в дробях надо уметь делать. В подобных навороченных примерах только она и спасает, да.) Разумеется, внимательность никто не отменял. Бывают задания, где просят избавиться от иррациональности в числителе . Эти задания ничем от рассмотренных не отличаются, только от корней очищается числитель.)

Более сложные примеры

Осталось рассмотреть некоторые специальные приёмы в работе с корнями и потренироваться распутывать не самые простые примеры. И тогда полученной информации уже будет достаточно для решения заданий с корнями любого уровня сложности. Итак – вперёд.) Для начала разберёмся, что делать со вложенными корнями, когда формула корня из корня не работает. Например, вот такой примерчик.

Вычислить:

Корень под корнем… К тому же под корнями сумма или разность. Стало быть, формула корня из корня (с перемножением показателей) здесь не действует . Значит, надо что-то делать с подкоренными выражениями : у нас просто нету других вариантов. В таких примерах чаще всего под большим корнем зашифрован полный квадрат какой-нибудь суммы. Или разности. А корень из квадрата уже отлично извлекается! И теперь наша задача – его расшифровать.) Такая расшифровка красиво делается через систему уравнений . Сейчас всё сами увидите.)

Итак, под первым корнем у нас вот такое выражение:

А вдруг, не угадали? Проверим! Возводим в квадрат по формуле квадрата суммы:

Всё верно.) Но… Откуда я взял это выражение ? С неба?

Нет.) Мы его чуть ниже получим честно. Просто по данному выражению я показываю, как именно составители заданий шифруют такие квадраты. :) Что такое 54? Это сумма квадратов первого и второго чисел . Причём, обратите внимание, уже без корней! А корень остаётся в удвоенном произведении , которое в нашем случае равно . Поэтому распутывание подобных примеров начинается с поиска удвоенного произведения. Если распутывать обычным подбором. И, кстати, о знаках. Тут всё просто. Если перед удвоенным плюс, то квадрат суммы. Если минус, то разности.) У нас плюс – значит, квадрат суммы.) А теперь – обещанный аналитический способ расшифровки. Через систему.)

Итак, у нас под корнем явно тусуется выражение (a+b) 2 , и наша задача – найти a и b . В нашем случае сумма квадратов даёт 54. Вот и пишем:

Теперь удвоенное произведение. Оно у нас . Так и записываем:

Получили вот такую системку:

Решаем обычным методом подстановки. Выражаем из второго уравнения, например, и подставляем в первое:

Решим первое уравнение:

Получили биквадратное уравнение относительно a . Считаем дискриминант:

Значит,

Получили аж четыре возможных значения a . Не пугаемся. Сейчас мы всё лишнее отсеем.) Если мы сейчас для каждого из четырёх найденных значений посчитаем соответствующие значения, то получим четыре решения нашей системы. Вот они:

И тут вопрос – а какое из решений нам подходит? Давайте подумаем. Отрицательные решения можно сразу отбросить: при возведении в квадрат минусы «сгорят», и всё подкоренное выражение в целом не изменится.) Остаются первые два варианта. Выбрать их можно совершенно произвольно: от перестановки слагаемых сумма всё равно не меняется.) Пусть, например, , а .

Итого получили под корнем квадрат вот такой суммы:

Всё чётко.)

Я не зря так детально описываю ход решения. Чтобы было понятно, как происходит расшифровка.) Но есть одна проблемка. Аналитический способ расшифровки хоть и надёжный, но весьма длинный и громоздкий: приходится решать биквадратное уравнение, получать четыре решения системы и потом ещё думать, какие из них выбрать… Хлопотно? Согласен, хлопотно. Этот способ безотказно работает в большинстве подобных примеров. Однако очень часто можно здорово сократить себе работу и найти оба числа творчески. Подбором.) Да-да! Сейчас, на примере второго слагаемого (второго корня), я покажу более лёгкий и быстрый способ выделения полного квадрата под корнем.

Итак, теперь у нас вот такой корень: .

Размышляем так: «Под корнем – скорее всего, зашифрованный полный квадрат. Раз перед удвоенным минус – значит, квадрат разности. Сумма квадратов первого и второго чисел даёт нам число 54. Но какие это квадраты? 1 и 53? 49 и 5? Слишком много вариантов… Нет, лучше начать распутывать с удвоенного произведения. Наши можно расписать как . Раз произведение удвоенное , то двойку сразу отметаем. Тогда кандидатами на роль a и b остаются 7 и . А вдруг, это 14 и /2 ? Не исключено. Но начинаем-то всегда с простого!» Итак, пусть , а . Проверим их на сумму квадратов:

Получилось! Значит, наше подкоренное выражение – это на самом деле квадрат разности:

Вот такой вот способ-лайт, чтобы не связываться с системой. Не всегда работает, но во многих таких примерах его вполне достаточно. Итак, под корнями – полные квадраты. Осталось только правильно извлечь корни, да досчитать пример:

А теперь разберём ещё более нестандартное задание на корни.)

Докажите, что число A – целое, если .

Впрямую ничего не извлекается, корни вложенные, да ещё и разных степеней… Кошмар! Однако, задание имеет смысл.) Стало быть, ключ к его решению имеется.) А ключ здесь такой. Рассмотрим наше равенство

как уравнение относительно A . Да-да! Хорошо бы избавиться от корней. Корни у нас кубические, поэтому возведём-ка обе части равенства в куб. По формуле куба суммы :

Кубы и корни кубические друг друга компенсируют, а под каждым большим корнем забираем одну скобку у квадрата и сворачиваем произведение разности и суммы в разность квадратов:

Отдельно сосчитаем разность квадратов под корнями:

Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если , и n - натуральное число, большее 1, то справедливо равенство


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени , т.е. только корни с одинаковым показателем.

Теорема 3.Если , k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4.Если , k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5.Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.



Примеры решения заданий


Пример 1. Вычислить

Решение.
Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2 ), получим:


Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления.

Деление квадратных корней приводит к упрощению дроби. Наличие квадратных корней немного усложняет процесс решения, но некоторые правила позволяют работать с дробями относительно легко. Главное помнить, что множители делятся на множители, а подкоренные выражения на подкоренные выражения. Также квадратный корень может стоять в знаменателе.

Шаги

Деление подкоренных выражений

    Запишите дробь. Если выражение представлено не в виде дроби, перепишите его в таком виде. Так легче следовать процессу деления квадратных корней. Помните, что горизонтальная черта представляет собой знак деления.

    Используйте один знак корня. Если и в числителе, и в знаменателе дроби находятся квадратные корни, запишите их подкоренные выражения под одним знаком корня, чтобы упростить процесс решения. Подкоренное выражение – это выражение (или просто число), которое находится под знаком корня.

    Разделите подкоренные выражение. Разделите одно число на другое (как обычно), а результат запишите под знаком корня.

    Упростите подкоренное выражение (если нужно). Если подкоренное выражение или один из его множителей является полным квадратом, упростите такое выражение. Полный квадрат – это число, которое является квадратом некоторого целого числа. Например, 25 – это полный квадрат, потому что 5 × 5 = 25 {\displaystyle 5\times 5=25} .

    Разложение подкоренного выражения на множители

    1. Запишите дробь. Если выражение представлено не в виде дроби, перепишите его в таком виде. Так легче следовать процессу деления квадратных корней, особенно при разложении подкоренного выражения на множители. Помните, что горизонтальная черта представляет собой знак деления.

      Разложите на множители каждое подкоренное выражение. Число, стоящее под знаком корня, раскладывается на множители как любое целое число. Множители запишите под знаком корня.

      Упростите числитель и знаменатель дроби. Для этого из под знака корня вынесите множители, которые представляют собой полные квадраты. Полный квадрат – это число, которое является квадратом некоторого целого числа. Множитель подкоренного выражения превратится в множитель перед знаком корня.

      Избавьтесь от корня в знаменателе (рационализируйте знаменатель). В математике не принято оставлять корень в знаменателе. Если в знаменателе дроби есть квадратный корень, избавьтесь от него. Для этого умножьте и числитель, и знаменатель на квадратный корень, от которого нужно избавиться.

      Упростите полученное выражение (если нужно). Иногда в числителе и знаменателе дроби находятся числа, которые можно упростить (сократить). Упростите целые числа, стоящие в числителе и знаменателе, как упрощаете любую дробь.

    Деление квадратных корней с множителями

      Упростите множители. Множитель – это число, которое стоит перед знаком корня. Чтобы упростить множители, разделите или сократите их (подкоренные выражения не трогайте).

      Упростите квадратные корни. Если числитель делится на знаменатель нацело, сделайте это; в противном случае упростите подкоренное выражение как любое другое выражение.

      Умножьте упрощенные множители на упрощенные корни. Помните, что лучше не оставлять корень в знаменателе, поэтому умножьте на этот корень и числитель, и знаменатель дроби.

      Если нужно, избавьтесь от корня в знаменателе (рационализируйте знаменатель). В математике не принято оставлять корень в знаменателе. Поэтому умножьте и числитель, и знаменатель на квадратный корень, от которого нужно избавиться.