Изотоп тория 232. Что такое торий? Свойства, добыча, применение и цена тория

Что будет, если мы скажем, будто избыток выбросов вредных веществ в результате сгорания бензина или обычного дизеля топлива можно решить, используя атомный двигатель? Впечатлит ли вас это? Если нет, то можно даже не начинать читать этот материал, а вот для тех, кому данная тема интересна, милости просим, потому, как речь у нас пойдет об атомном двигателе для автомобиля, который работает на изотопе тория-232.

Удивительно, но именно торий-232 обладает самым большим периодом полураспада среди изотопов тория и при этом является наиболее распространенным. Поразмыслив над этим фактом, ученые американской компании Laser Power Systems заявили о возможности сконструировать двигатель, который использует торий в качестве топлива и при этом является абсолютно реальным проектом на сегодняшний день.

Уже давно было определено, что торий, в случае использования его как топлива, имеет сильные позиции и при «работе» выделяет колоссальное количество энергии. По подсчетам ученых, всего 8 грамм тория-232 позволят работать двигателю в течение 100 лет, а 1 грамм произведет больше энергии, чем 28 тыс. литров бензина . Согласитесь, подобное не может не впечатлять.

Как сообщает генеральный директор Laser Power Systems Чарльз Стивенс, команда специалистов уже начала эксперименты, используя небольшое количество тория, однако самая ближайшая цель это создание необходимого для технологического процесса лазера. Описывая принцип работы подобного двигателя, можно привести в пример работу классической электростанции. Так, лазер, по планам ученых, будет нагревать емкость с водой, а полученный пар пойдет на работу мини-турбин.


Однако, каким бы прорывным не казалось заявление специалистов LPS , сама идея использовать атомный ториевый двигатель не нова. В 2009 году, Лорен Кулеусус показал мировому сообществу свое видение будущего и продемонстрировал концепт-кар Cadillac World Thorium Fuel Concept Car. И, несмотря на его футуристический внешний вид, главным отличием концепт-кара было наличие источника энергии для автономной работы, который использовал в качестве топлива торий.

«Учёными должен быть найден более дешёвый источник энергии в сравнении с углём, обладающий низким значением выброса диоксида углерода при сгорании или его отсутствием. В противном случае данная идея вовсе не сможет получить своего развития» - Роберт Харгрейв, специалист в области изучения свойств тория


На данный момент специалисты Laser Power Systems полностью сосредоточили свои силы на создании серийного образца двигателя для массового производства. Впрочем, не исчезает один из самых важных вопросов, как отреагируют на подобное новшество страны и компании, лоббирующие «нефтяные» интересы. Ответ подскажет только время.

Интересное:

  • Природные запасы тория превышают запасы урана в 3-4 раза
  • Специалисты называют торий и в частности торий -232 «ядерным топливом будущего»
Изотопная распространённость 100 % Период полураспада 1,405(6)·10 10 лет Продукты распада 228 Ra Родительские изотопы 232 Ac (β −)
232 Pa (β +)
236 U () Спин и чётность ядра 0 + Канал распада Энергия распада α-распад 4,0816(14) МэВ 24 Ne, 26 Ne ββ 0,8376(22) МэВ

Вместе с другими природными изотопами тория , торий-232 появляется в ничтожных количествах в результате распада изотопов урана .

Образование и распад

Торий-232 образуется в результате следующих распадов:

\mathrm{^{232}_{\ 89}Ac} \rightarrow \mathrm{^{232}_{\ 90}Th} + e^- + \bar{\nu}_e; \mathrm{^{232}_{\ 91}Pa} + e^- \rightarrow \mathrm{^{232}_{\ 90}Th} + \bar{\nu}_e; \mathrm{^{236}_{\ 92}U} \rightarrow \mathrm{^{232}_{\ 90}Th} + \mathrm{^{4}_{2}He}.

Распад тория-232 происходит по следующим направлениям:

\mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{228}_{\ 88}Ra} + \mathrm{^{4}_{2}He};

энергия испускаемых α-частиц 3 947,2 кэВ (в 21,7 % случаев) и 4 012,3 кэВ (в 78,2 % случаев) .

\mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{208}_{\ 80}Hg} + \mathrm{^{24}_{10}Ne}; \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{206}_{\ 80}Hg} + \mathrm{^{26}_{10}Ne}; \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{232}_{\ 92}U} + 2e^- + 2 \bar{\nu}_e.

Применение

\mathrm{^{1}_{0}n} + \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{233}_{\ 90}Th} \xrightarrow{\beta^-\ 1,243\ MeV} \mathrm{^{233}_{\ 91}Pa} \xrightarrow{\beta^-\ 0,5701\ MeV} \mathrm{^{233}_{\ 92}U}.

См. также

Напишите отзыв о статье "Торий-232"

Примечания

  1. G. Audi, A.H. Wapstra, and C. Thibault (2003). «». Nuclear Physics A 729 : 337-676. DOI :10.1016/j.nuclphysa.2003.11.003 . Bibcode : .
  2. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 . Bibcode : .
  3. Rutherford Appleton Laboratory . . . (англ.) (Проверено 4 марта 2010)
  4. World Nuclear Association . . . (англ.) (Проверено 4 марта 2010)
  5. (2004) «». Nature 17 : 117–120. (англ.) (Проверено 4 марта 2010)
Легче:
торий-231
Торий-232 является
изотопом тория
Тяжелее:
торий-233
Изотопы элементов · Таблица нуклидов

Отрывок, характеризующий Торий-232

– Это Машины божьи люди, – сказал князь Андрей. – Они приняли нас за отца. А это единственно, в чем она не повинуется ему: он велит гонять этих странников, а она принимает их.
– Да что такое божьи люди? – спросил Пьер.
Князь Андрей не успел отвечать ему. Слуги вышли навстречу, и он расспрашивал о том, где был старый князь и скоро ли ждут его.
Старый князь был еще в городе, и его ждали каждую минуту.
Князь Андрей провел Пьера на свою половину, всегда в полной исправности ожидавшую его в доме его отца, и сам пошел в детскую.
– Пойдем к сестре, – сказал князь Андрей, возвратившись к Пьеру; – я еще не видал ее, она теперь прячется и сидит с своими божьими людьми. Поделом ей, она сконфузится, а ты увидишь божьих людей. C"est curieux, ma parole. [Это любопытно, честное слово.]
– Qu"est ce que c"est que [Что такое] божьи люди? – спросил Пьер
– А вот увидишь.
Княжна Марья действительно сконфузилась и покраснела пятнами, когда вошли к ней. В ее уютной комнате с лампадами перед киотами, на диване, за самоваром сидел рядом с ней молодой мальчик с длинным носом и длинными волосами, и в монашеской рясе.
На кресле, подле, сидела сморщенная, худая старушка с кротким выражением детского лица.
– Andre, pourquoi ne pas m"avoir prevenu? [Андрей, почему не предупредили меня?] – сказала она с кротким упреком, становясь перед своими странниками, как наседка перед цыплятами.
– Charmee de vous voir. Je suis tres contente de vous voir, [Очень рада вас видеть. Я так довольна, что вижу вас,] – сказала она Пьеру, в то время, как он целовал ее руку. Она знала его ребенком, и теперь дружба его с Андреем, его несчастие с женой, а главное, его доброе, простое лицо расположили ее к нему. Она смотрела на него своими прекрасными, лучистыми глазами и, казалось, говорила: «я вас очень люблю, но пожалуйста не смейтесь над моими ». Обменявшись первыми фразами приветствия, они сели.
– А, и Иванушка тут, – сказал князь Андрей, указывая улыбкой на молодого странника.
– Andre! – умоляюще сказала княжна Марья.
– Il faut que vous sachiez que c"est une femme, [Знай, что это женщина,] – сказал Андрей Пьеру.
– Andre, au nom de Dieu! [Андрей, ради Бога!] – повторила княжна Марья.
Видно было, что насмешливое отношение князя Андрея к странникам и бесполезное заступничество за них княжны Марьи были привычные, установившиеся между ними отношения.
– Mais, ma bonne amie, – сказал князь Андрей, – vous devriez au contraire m"etre reconaissante de ce que j"explique a Pierre votre intimite avec ce jeune homme… [Но, мой друг, ты должна бы быть мне благодарна, что я объясняю Пьеру твою близость к этому молодому человеку.]
– Vraiment? [Правда?] – сказал Пьер любопытно и серьезно (за что особенно ему благодарна была княжна Марья) вглядываясь через очки в лицо Иванушки, который, поняв, что речь шла о нем, хитрыми глазами оглядывал всех.
Княжна Марья совершенно напрасно смутилась за своих. Они нисколько не робели. Старушка, опустив глаза, но искоса поглядывая на вошедших, опрокинув чашку вверх дном на блюдечко и положив подле обкусанный кусочек сахара, спокойно и неподвижно сидела на своем кресле, ожидая, чтобы ей предложили еще чаю. Иванушка, попивая из блюдечка, исподлобья лукавыми, женскими глазами смотрел на молодых людей.
– Где, в Киеве была? – спросил старуху князь Андрей.
– Была, отец, – отвечала словоохотливо старуха, – на самое Рожество удостоилась у угодников сообщиться святых, небесных тайн. А теперь из Колязина, отец, благодать великая открылась…
– Что ж, Иванушка с тобой?
– Я сам по себе иду, кормилец, – стараясь говорить басом, сказал Иванушка. – Только в Юхнове с Пелагеюшкой сошлись…
Пелагеюшка перебила своего товарища; ей видно хотелось рассказать то, что она видела.
– В Колязине, отец, великая благодать открылась.
– Что ж, мощи новые? – спросил князь Андрей.
– Полно, Андрей, – сказала княжна Марья. – Не рассказывай, Пелагеюшка.
– Ни… что ты, мать, отчего не рассказывать? Я его люблю. Он добрый, Богом взысканный, он мне, благодетель, рублей дал, я помню. Как была я в Киеве и говорит мне Кирюша юродивый – истинно Божий человек, зиму и лето босой ходит. Что ходишь, говорит, не по своему месту, в Колязин иди, там икона чудотворная, матушка пресвятая Богородица открылась. Я с тех слов простилась с угодниками и пошла…
Все молчали, одна странница говорила мерным голосом, втягивая в себя воздух.
– Пришла, отец мой, мне народ и говорит: благодать великая открылась, у матушки пресвятой Богородицы миро из щечки каплет…
– Ну хорошо, хорошо, после расскажешь, – краснея сказала княжна Марья.
– Позвольте у нее спросить, – сказал Пьер. – Ты сама видела? – спросил он.

В 1815 году знаменитый шведский химик Йенс Якоб Берцелиус заявил об открытии нового элемента, который он назвал торием в честь Тора, бога-громовержца и сына верховного скандинавского бога Одина. Однако в 1825 году обнаружилось, что открытие это было ошибкой. Тем не менее название пригодилось — его Берцелиус дал новому элементу, который он обнаружил в 1828 году в одном из норвежских минералов (сейчас этот минерал называется торит). Этому элементу, возможно, предстоит большое будущее, где он сможет сыграть в атомной энергетике роль, не уступающую по важности главному ядерному топливу — урану.

Плюсы и минусы
+ Тория на Земле в несколько раз больше, чем урана
+ Не нужно разделять изотопы
+ Радиоактивное заражение при добыче тория существенно меньше (за счет более короткоживущего радона)
+ Можно использовать уже существующие тепловые реакторы
+ Торий имеет лучшие термомеханические свойства, чем уран
+ Торий менее токсичен, чем уран
+ При использовании тория не образуются минорные актиниды (долгоживущие радиоактивные изотопы)
- В процессе облучения тория образуются гамма-излучающие изотопы, что создает трудности при переработке топлива

Дальние родственники бомбы

Атомная энергетика, на которую сейчас возлагается столько надежд, — это побочная ветвь военных программ, основными целями которых было создание атомного оружия (а чуть позднее реакторов для подводных лодок). В качестве ядерного материала для изготовления бомб можно было выбрать из трех возможных вариантов: уран-235, плутоний-239 или уран-233.

Так выглядит ториевый ядерный цикл, иллюстрирующий превращение тория в высокоэффективное ядерное топливо — уран-233.

Уран-235 содержится в природном уране в очень небольшом количестве — всего 0,7% (остальные 99,3% составляет изотоп 238), и его нужно выделить, а это дорогостоящий и сложный процесс. Плутоний-239 не существует в природе, его нужно нарабатывать, облучая нейтронами уран-238 в реакторе, а затем выделяя его из облученного урана. Таким же образом можно получать уран-233 путем облучения нейтронами тория-232.


В 1960-х планировалось замкнуть ядерный цикл по урану и плутонию с использованием примерно 50% АЭС на тепловых реакторах и 50% на быстрых. Но разработка быстрых реакторов вызвала трудности, так что в настоящее время эксплуатируется лишь один такой реактор — БН-600 на Белоярской АЭС (и построен еще один — БН-800). Поэтому сбалансированную систему можно создать из ториевых тепловых реакторов и примерно 10% быстрых реакторов, которые будут восполнять недостающее топливо для тепловых.

Первые два способа в 1940-х годах были реализованы, а вот с третьим физики решили не возиться. Дело в том, что в процессе облучения тория-232 помимо полезного урана-233 образуется еще и вредная примесь — уран-232 с периодом полураспада в 74 года, цепочка распадов которого приводит к появлению таллия-208. Этот изотоп излучает высокоэнергетичные (жесткие) гамма-кванты, для защиты от которых требуются толстенные свинцовые плиты. Кроме того, жесткое гамма-излучение выводит из строя управляющие электронные цепи, без которых невозможно обойтись в конструкции оружия.

Ториевый цикл

Тем не менее о тории не совсем забыли. Еще в 1940-х годах Энрико Ферми предложил нарабатывать плутоний в реакторах на быстрых нейтронах (это более эффективно, чем на тепловых), что привело к созданию реакторов EBR-1 и EBR-2. В этих реакторах уран-235 или плутоний-239 являются источником нейтронов, превращающих уран-238 в плутоний-239. При этом плутония может образовываться больше, чем «сжигается» (в 1,3−1,4 раза), поэтому такие реакторы называются «размножителями».


Другая научная группа под руководством Юджина Вигнера предложила свой проект реактора-размножителя, но не на быстрых, а на тепловых нейтронах, с торием-232 в качестве облучаемого материала. Коэффициент воспроизводства при этом уменьшился, но конструкция была более безопасной. Однако существовала одна проблема. Ториевый топливный цикл выглядит таким образом. Поглощая нейтрон, торий-232 переходит в торий-233, который быстро превращается в протактиний-233, а он уже самопроизвольно распадается на уран-233 с периодом полураспада 27 дней. И вот в течение этого месяца протактиний будет поглощать нейтроны, мешая процессу наработки. Для решения этой проблемы хорошо бы вывести протактиний из реактора, но как это сделать? Ведь постоянная загрузка и выгрузка топлива сводит эффективность наработки почти к нулю. Вигнер предложил очень остроумное решение — реактор с жидким топливом в виде водного раствора солей урана. В 1952 году в Национальной лаборатории в Оак-Ридже под руководством ученика Вигнера, Элвина Вайнберга, был построен прототип такого реактора — Homogeneous Reactor Experiment (HRE-1). А вскоре появилась еще более интересная концепция, идеально подходившая для работы с торием: это реактор на расплавах солей, Molten-Salt Reactor Experiment. Топливо в виде фторида урана было растворено в расплаве фторидов лития, бериллия и циркония. MSRE проработал с 1965 по 1969 год, и хотя торий там не использовался, сама концепция оказалась вполне работоспособной: использование жидкого топлива повышает эффективность наработки и позволяет выводить из активной зоны вредные продукты распада.


Жидкосолевой реактор позволяет намного более гибко управлять топливным циклом, чем обычные тепловые станции, и использовать топливо с наибольшей эффективностью, выводя вредные продукты распада из активной зоны и добавляя новое топливо по мере необходимости.

Путь наименьшего сопротивления

Тем не менее жидкосолевые реакторы (ЖСР) не получили распространения, поскольку обычные тепловые реакторы на уране оказались дешевле. Мировая атомная энергетика пошла по наиболее простому и дешевому пути, взяв за основу проверенные водо-водяные реакторы под давлением (ВВЭР), потомки тех, которые были сконструированы для подводных лодок, а также кипящие водо-водяные реакторы. Реакторы с графитовым замедлителем, такие как РБМК, представляют собой другую ветвь генеалогического древа — они происходят от реакторов для наработки плутония. «Основным топливом для этих реакторов является уран-235, но его запасы хотя и довольно значительны, тем не менее ограничены, — объясняет «Популярной механике» начальник отдела системных стратегических исследований Научно-исследовательского центра «Курчатовский институт» Станислав Субботин. — Этот вопрос начал рассматриваться еще в 1960-х годах, и тогда планируемым решением этой проблемы считалось введение в ядерный топливный цикл отвального урана-238, запасов которого почти в 200 раз больше. Для этого планировалось построить множество реакторов на быстрых нейтронах, которые бы нарабатывали плутоний с коэффициентом воспроизводства 1,3−1,4, чтобы избыток можно было использовать для питания тепловых реакторов. Быстрый реактор БН-600 был запущен на Белоярской АЭС — правда, не в режиме бридера. Недавно там же был построен и еще один — БН-800. Но для построения эффективной экосистемы атомной энергетики таких реакторов нужно примерно 50%».


Все радиоактивные изотопы, которые встречаются в природе в естественных условиях, принадлежат к одному из трех семейств (радиоактивных рядов). Каждый такой ряд — это цепочка ядер, связанных последовательным радиоактивным распадом. Родоначальники радиоактивных рядов — долгоживущие изотопы уран-238 (период полураспада 4,47 млрд лет), уран-235 (704 млн лет) и торий-232 (14,1 млрд лет). Цепочки заканчиваются стабильными изотопами свинца. Существует еще один ряд, начинающийся с нептуния-237, но период его полураспада слишком мал — всего лишь 2,14 млн лет, поэтому в природе он не встречается.

Могучий торий

Вот тут как раз на сцену и выходит торий. «Торий часто называют альтернативой урану-235, но это совершенно неправильно, — говорит Станислав Субботин. — Сам по себе торий, как и уран-238, вообще не является ядерным топливом. Однако, поместив его в нейтронное поле в самом обычном водо-водяном реакторе, можно получить отличное топливо — уран-233, которое затем использовать для этого же самого реактора. То есть никаких переделок, никакого серьезного изменения существующей инфраструктуры не нужно. Еще один плюс тория — распространенность в природе: его запасы как минимум втрое превышают запасы урана. Кроме того, нет необходимости в разделении изотопов, поскольку при попутной добыче вместе с редкоземельными элементами встречается только торий-232. Опять же, при добыче урана происходит загрязнение окружающей местности относительно долгоживущим (период полураспада 3,8 суток) радоном-222 (в ряду тория радон-220 — короткоживущий, 55 секунд, и не успевает распространиться). Кроме того, торий имеет отличные термомеханические свойства: он тугоплавкий, менее склонен к растрескиванию и выделяет меньше радиоактивных газов при повреждении оболочки ТВЭЛ. Наработка урана-233 из тория в тепловых реакторах примерно в три раза более эффективна, чем плутония из урана-235, так что наличие как минимум половины таких реакторов в экосистеме атомной энергетики позволит замкнуть цикл по урану и плутонию. Правда, быстрые реакторы все равно будут нужны, поскольку коэффициент воспроизводства у ториевых реакторов не превышает единицы».


На производство 1 ГВт в течение года требуется: 250 т природного урана (содержат 1,75 т урана-235) требуется добыть 215 т обедненного урана (в том числе 0,6 т урана-235) уходят в отвалы; 35 т обогащенного урана (из них 1,15 т урана-235) загружаются в реактор; отработанное топливо содержит 33,4 т урана-238, 0,3 т урана-235, 0,3 т плутония-239, 1 т продуктов распада. 1 т тория-232 при загрузке в жидкосолевой реактор полностью конвертируется в 1 т урана-233; 1 т продуктов распада, из них 83% - короткоживущие изотопы (распадаются до стабильных примерно за десять лет).

Однако у тория есть и один достаточно серьезный минус. При нейтронном облучении тория уран-233 оказывается загрязненным ураном-232, который испытывает цепочку распадов, приводящую к жесткому гамма-излучающему изотопу таллий-208. «Это сильно затрудняет работу по переработке топлива, — объясняет Станислав Субботин. — Но с другой стороны, облегчает обнаружение такого материала, уменьшая риск хищений. Кроме того, в замкнутом ядерном цикле и при автоматизированной обработке топлива это не имеет особого значения».


Термоядерное зажигание

Эксперименты по использованию ториевых ТВЭЛов в тепловых реакторах ведутся в России и других странах — Норвегии, Китае, Индии, США. «Сейчас самое время вернуться к идее жидкосолевых реакторов, — считает Станислав Субботин. — Химия фторидов и фторидных расплавов хорошо изучена благодаря производству алюминия. Для тория реакторы на расплавах солей гораздо более эффективны, чем обычные водо-водяные, поскольку позволяют гибко производить загрузку и вывод продуктов распада из активной зоны реактора. Более того, с их помощью можно реализовать гибридные подходы, используя в качестве источника нейтронов не ядерное топливо, а термоядерные установки — хотя бы те же токамаки. К тому же жидкосолевой реактор позволяет решить проблему с минорными актинидами — долгоживущими изотопами америция, кюрия и нептуния (которые образуются в облученном топливе), «дожигая» их в реакторе-мусорщике. Так что в перспективе нескольких десятилетий в атомной энергетике без тория нам не обойтись».

ТОРИЙ

Торий – природный слабо радиоактивный металл, открытый в 1828 г. шведским химиком Йенсом Берцелиусом, который назвал его в честь Тора, бога войны скандинавских народов. В небольших количествах он присутствует во многих горных породах и грунтах, где его содержание почти в три раза превышает содержание урана. В почве содержится приблизительно шесть частей тория на миллион.

Торий встречается во многих минералах, наиболее распространенным из которых является редкоземельный минерал – фосфат тория – монацит, в котором содержится до 12% оксида тория. Залежи этого минерала имеются в нескольких странах. Торий-232 распадается очень медленно (его период полураспада почти в три раза превышает возраст Земли), но другие изотопы тория содержатся в нем и в цепях распада урана. Большинство из них являются короткоживущими элементами, и поэтому они намного более радиоактивны, чем Th-232, хотя в массовом отношении их содержание ничтожно мало.

Мировые запасы тория (доступные для добычи)
Страна Запасы (в тоннах)
Австралия 300000
Индия 290000
Норвегия 170000
USA 160000
Канада 100000
Южная Африка 35000
Бразилия 16000
Прочие страны 95000
Всего 1200000
(Источник – Служба геологической разведки USA, Запасы минералов, январь 1999 года)

Торий в качестве ядерного топлива

Торий, как и уран , может использоваться в качестве ядерного топлива. Сам по себе не являющийся делящимся материалом Th-232 поглощает медленные нейтроны и образует делящийся уран-233. Как и U-2238, торий-232 является топливным сырьем.

По одному из существенных показателей U-233 превосходит уран-235 и плутоний-239, имея более высокий выход нейтронов на один поглощенный нейтрон. Если начать реакцию с помощью другого делящегося материала (U-235 или Pu-239), можно реализовать цикл наработки делящегося материала, напоминающий, но более эффективный, чем цикл на U-238 и плутоний в реакторах на медленных нейтронах. Th-232 поглощает нейтрон и преобразуется в Th-233, который при распаде переходит в Ра-233, а затем в U-233. Облученное топливо можно выгрузить из реактора, U-233 отделить от тория и загрузить в другой реактор, как часть замкнутого топливного цикла.

За последние 30 лет появился интерес к торию в качестве ядерного топлива, поскольку его запасы в земной коре в три раза превышают запасы урана. Кроме того, в реакторах можно использовать весь добываемый торий в отличие от 0,7% изотопа U-235 из природного урана.

Основным вариантом в реакторах типа PWR могут быть топливные сборки, смонтированные так, что бланкет, состоящий главным образом из тория, покрывает затравочный элемент с большей степенью обогащения, содержащий U-235, который производит нейтроны для подкритического бланкета. Поскольку U-233 производится в бланкете, он там же и сгорает. Здесь речь следует о легководном реакторе-бридере, который успешно прошел демонстрационные испытания в USA в 1970 годах.

Научно-исследовательские и конструкторские разработки

Возможность реализации ториевых топливных циклов изучается уже около 30 лет, однако значительно менее интенсивно, чем урановых или уран-плутониевых циклов. Основные исследовательские и конструкторские работы проводились в Германии, Индии, Японии, Рф, Великобритании и USA. Было проведено также и пробное облучение ториевого топлива в реакторах до получения высокого уровня выгорания. Полностью или частично загружались ториевым топливом несколько опытных реакторов.

К заслуживающим внимания экспериментам по ториевому циклу относятся следующие (первые три проводились на высокотемпературных реакторах с газовым охлаждением):

  • В период с 1967 по 1988 годы в Германии более 750 недель эксплуатировался экспериментальный реактор AVR с насыпным бланкетом при мощности 15 МегаВт. 95% всего периода работы реактора составляла работа на ториевом топливе. Топливо представляло собой 100000 топливных элементов в виде шариков. Общий вес ториевого топлива составлял 1360 кг; торий использовался в смеси с высокообогащенным ураном. Максимальная глубина выгорания составила 150000 МВт·сутки/т.
  • Ториевые ТВЭЛы, состоящие из тория и урана в соотношении 10:1, в течение 741 суток облучались в реакторе Dragon мощностью 20 МегаВт в английском городе Уинфит. Реактор Dragon эксплуатировался в рамках совместного проекта, в котором, наряду с Великобританией, с 1964 по 1973 годы участвовали Австрия, Дания, Швеция, Норвегия и Швейцария. Ториево-урановое топливо использовалось для производства U-233, который заменял потребляемый U-235 примерно в том же соотношении. Топливо могло работать в реакторе в течение шести лет.
  • В 1967-1974 годах в USA работал высокотемпературный реактор Peach Bottom на уран-ториевом топливе мощностью 110 МегаВт производства компании General Atomic.
  • В Индии в 1996 г. в Калпаккаме в качестве источника нейтронов был запущен экспериментальный исследовательский реактор Kamini мощностью 30 кВт, работавший на U-233, полученном путем облучения ThO 2 на другом реакторе. Реактор был построен неподалеку от бридерного реактора на быстрых нейтронах мощностью 40 МегаВт, в котором и облучался ThO 2 .
  • В Нидерландах в течение трех лет эксплуатировался гомогенный реактор с водяной смесью мощностью 1 МегаВт. В реакторе использовалось топливо в виде раствора высокообогащенного урана и тория; с целью удаления продуктов деления непрерывно велась переработка, в результате которой с высоким К.П.Д. производился U-233.
  • Проводился ряд экспериментов с реакторами на быстрых нейтронах.

Энергетические реакторы

  • На базе реактора AVR в Германии был разработан 300 МегаВт-реактор THTR, проработавший с 1983 по 1989 годы; реактор работал на насыпном бланкете из 674000 элементов, из которых больше половины представляло собой уран-ториевое топливо, а остальные – графитовый замедлитель и нейтронные поглотители. ТВЭЛы непрерывно обновлялись при загрузке, и в среднем прошли через реактор шесть раз. Производство топлива было поставлено на промышленную основу.
  • Реактор Fort St Vrain был единственным в USA коммерческим реактором, работавшем на ториевом топливе; этот реактор также был сконструирован на базе немецкого AVR и проработал с 1976 по 1989 годы. Это был высокотемпературный реактор (1300°С) с графитовым замедлителем и гелиевым охлаждением с проектной мощностью 842 МегаВт (330 МегаВт электрических). Топливные элементы были изготовлены из карбида тория и карбида Th/U-235 в виде микросфер, для удержания продуктов деления, покрытых диоксидом кремния и пироуглеродом. ТВЭЛы имели форму шестигранных колонн («призм»). В реакторе использовалось почти 25 тонн тория; глубина выгорания составила 170000 МВт·сутки/т.
  • Исследования ториевого топлива для реакторов типа PWR проводились на американском реакторе Shippingport; в качестве исходного делящегося материала топлива использовались U-235 и плутоний. Был сделан вывод, что торий серьезно не повлияет на режимы работы и сроки эксплуатации активной зоны. Здесь же с 1977 по 1982 годы успешно прошли испытания легководного бридерного реактора затравочно-бланкетного типа на ториево-урановом топливе, покрытым сплавом циркония.
  • В 60-мегаваттном реакторе Lingen типа BWR в Германии использовались Th/Pu-ТВЭЛы.

Индия

В Индии с целью повышения эффективности после запуска в блоки 1 и 2 А.Э.С в Какрапаре было загружено 500 кг ториевого топлива. 1-Ый блок А.Э.С был первым в мире реактором, в котором для выравнивания мощности в активной зоне использовался не обедненный уран, а торий. Работая на ториевом топливе, 1-й блок вышел на полную мощность за 300 суток, а 2-й блок – за 100 суток. Ториевое топливо планируется использовать в блоках 1 и 2 А.Э.С в Кайга и в блоках 3 и 4 А.Э.С в Раджастане, которые находятся в стадии строительства.

Обладая запасами тория, в шесть раз превышающими запасы урана, Индия в качестве основной задачи промышленного производства энергии поставила задачу внедрения ториевого цикла, которая будет решаться в три этапа:

  • тяжеловодные реакторы CANDU, работающие на топливе из природного урана, будут использоваться для наработки плутония;
  • реакторы-бридеры на быстрых нейтронах (FBR) на основе полученного плутония будут производить U-233 из тория;
  • перспективные тяжеловодные реакторы будут работать на U-233 и тории, получая 75% энергии из тория.

Отработанное топливо затем будет перерабатываться для восстановления делящихся материалов и их последующей переработки;

В качестве еще одной возможности для третьего этапа рассматриваются подкритические комплексы на ускорителях (ADS).

Разработка перспективных реакторов

Конструкторские решения по перспективным реакторам на ториевом топливе включают:

  • Легководные реакторы, использующие в качестве топлива оксид плутония (PuO 2), оксид тория (ThO 2) и(или) оксид урана (UO 2), из которых изготовляются стержневые ТВС.
  • Высокотемпературные реакторы с газовым охлаждением (HTGR) двух типов – с насыпным бланкетом и призматическими топливными сборками.
  • Газотурбинные модульные реакторы с гелиевым охлаждением (GT-MHR). Результатом проведенных в USA исследований на реакторах типа HTGR стали призматические ТВС. Использование гелия для охлаждения при высоких температурах и сравнительно небольшая выходная энергия на модуль (600 МВт) позволяет скомбинировать модульную конструкцию с газовой турбиной (цикл Брайтона), что повышает производство тепловой энергии почти на 50%. Активная зона таких реакторов допускает применение широкого спектра конструкций ТВС, в том числе ВОУ/Th и Pu/Th. Использование ВОУ/Th-топлива было продемонстрировано на американском реакторе Fort St Vrain.
  • Модульный реактор с насыпным бланкетом (PBMR). Сконструирован в Южной Африке на основе результатов проведенных в Германии исследований. Сейчас работы ведутся международным консорциумом. Позволяет использовать ториевые насыпные бланкеты.
  • Реакторы на солевом расплаве. Перспективный реактор-бридер, в котором ториевое топливо используется в виде солевого расплава, не требуя дополнительного внешнего охлаждения. Хладагент первичного контура проходит через теплообменник, где тепловая энергия реакции деления передается в рабочий материал вторичного контура с целью генерации пара. Детальные исследования концепции проводились в 60-е годы ХХ века; сейчас они возобновились в связи с появлением передовых технологий производства материалов.
  • Перспективные тяжеловодные реакторы (AHWR). В Индии в настоящее время ведутся работы по этому направлению. Как и канадский реактор CANDU-NG, индийский реактор мощностью 250 МегаВт охлаждается обычной водой. Основная часть активной зоны состоит из смеси оксидов тория и U-233 в подкритическом состоянии; пропорции смеси таковы, что U-233 самовоспроизводится. Реакция управляется несколькими затравочными зонами на основе обычного МОХ-топлива.
  • Утилизация плутония. Сегодня в некоторых реакторах используется МОХ-топливо (U, Pu). Альтернатива состоит в использовании торий-плутониевого топлива; в этом случае реактор работает на плутонии, производя делящийся U-233, который после разделения можно использовать в составе уран-ториевого топливного цикла.

Применение тория в комплексах с ускорителями (ADS)

В комплексах с ускорителями высокоэнергетические нейтроны производятся за счет реакции расщепления ядер высокоэнергетическими протонами ускорителя, соударяющимися с тяжелыми ядрами мишени (свинец, свинец-висмут или другие элементы). Эти нейтроны можно направить в субкритический реактор, содержащий торий, где нейтроны производят U-233 и обеспечивают его деление. Существует возможность обеспечения самоподдерживающейся реакции деления, которую можно направить либо на производство энергии, либо на трансмутацию актиноидов, образующихся в результате U/Pu топливного цикла. Использование тория вместо урана означает, что в самом реакторе ADS будет производиться меньшее число актиноидов.

Разработка ториевого топливного цикла

Проблемы, связанные с решением этой задачи, сводятся к высокой стоимости производства топлива частично вследствие высокой радиоактивности U-233, который всегда содержит U-232; аналогичные проблемы касаются и переработки тория вследствие высокой радиоактивности Th-228, определенного риска распространения U-233 как оружейного материала, а также ряда технических проблем переработки (пока не решенных должным образом). Предстоит проделать большую работу, прежде чем ториевый цикл будет поставлен на коммерческую основу, но пока можно в больших количествах добывать уран, такая работа представляется маловероятной.

Тем не менее, ториевый цикл с его потенциалом по воспроизводству без использования реакторов на быстрых нейтронах сохранит свою перспективность еще в течение длительного времени. Этот цикл является определяющим фактором в развитии самодостаточной ядерной энергетики.

Что будет, если мы скажем, будто избыток выбросов вредных веществ в результате сгорания бензина или обычного дизеля топлива можно решить, используя атомный двигатель? Впечатлит ли вас это? Если нет, то можно даже не начинать читать этот материал, а вот для тех, кому данная тема интересна, милости просим, потому, как речь у нас пойдет об атомном двигателе для автомобиля, который работает на изотопе тория-232.

Удивительно, но именно торий-232 обладает самым большим периодом полураспада среди изотопов тория и при этом является наиболее распространенным. Поразмыслив над этим фактом, ученые американской компании Laser Power Systems заявили о возможности сконструировать двигатель, который использует торий в качестве топлива и при этом является абсолютно реальным проектом на сегодняшний день.

Уже давно было определено, что торий, в случае использования его как топлива, имеет сильные позиции и при «работе» выделяет колоссальное количество энергии. По подсчетам ученых, всего 8 грамм тория-232 позволят работать двигателю в течение 100 лет, а 1 грамм произведет больше энергии, чем 28 тыс. литров бензина . Согласитесь, подобное не может не впечатлять.

Как сообщает генеральный директор Laser Power Systems Чарльз Стивенс, команда специалистов уже начала эксперименты, используя небольшое количество тория, однако самая ближайшая цель это создание необходимого для технологического процесса лазера. Описывая принцип работы подобного двигателя, можно привести в пример работу классической электростанции. Так, лазер, по планам ученых, будет нагревать емкость с водой, а полученный пар пойдет на работу мини-турбин.

Однако, каким бы прорывным не казалось заявление специалистов LPS, сама идея использовать атомный ториевый двигатель не нова. В 2009 году, Лорен Кулеусус показал мировому сообществу свое видение будущего и продемонстрировал концепт-кар Cadillac World Thorium Fuel Concept Car. И, несмотря на его футуристический внешний вид, главным отличием концепт-кара было наличие источника энергии для автономной работы, который использовал в качестве топлива торий.

«Учёными должен быть найден более дешёвый источник энергии в сравнении с углём, обладающий низким значением выброса диоксида углерода при сгорании или его отсутствием. В противном случае данная идея вовсе не сможет получить своего развития» - Роберт Харгрейв, специалист в области изучения свойств тория

На данный момент специалисты Laser Power Systems полностью сосредоточили свои силы на создании серийного образца двигателя для массового производства. Впрочем, не исчезает один из самых важных вопросов, как отреагируют на подобное новшество страны и компании, лоббирующие «нефтяные» интересы. Ответ подскажет только время.


Интересное:

  • Природные запасы тория превышают запасы урана в 3-4 раза
  • Специалисты называют торий и в частности торий -232 «ядерным топливом будущего»

Популярное