Работа внешних сил. Потенциальная энергия Как найти работу внешней силы

··· Орловский выпуск ···

Г.А.БЕЛУХА ,
школа № 4, г. Ливны, Орловская обл.

Работа газа в термодинамике

При изучении работы газа в термодинамике учащиеся неизбежно сталкиваются с трудностями, обусловленными слабыми навыками вычисления работы переменной силы. Поэтому к восприятию этой темы необходимо готовиться, начиная уже с изучения работы в механике и решая с этой целью задачи на работу переменной силы путём суммирования элементарных работ на всём пути с помощью интегрирования.

Например, при вычислениях работы силы Архимеда, силы упругости, силы всемирного тяготения и т.п. надо учиться суммировать элементарные величины с помощью простейших дифференциальных соотношений типа dA = Fds . Опыт показывает, что старшеклассники легко справляются с этой задачей, – дугу траектории, на которой сила увеличивается или уменьшается, нужно разбить на такие промежутки ds , на которых силу F можно считать постоянной величиной, а затем, зная зависимость F = F (s ), подставить её под знак интеграла. Например,

Работа этих сил вычисляется с помощью простейшего табличного интеграла

Такая методика облегчает адаптацию будущих студентов к восприятию курса физики в вузе и устраняет методические сложности, связанные с умением находить работу переменной силы в термодинамике и др.

После того как учащиеся усвоили, что такое внутренняя энергия и как найти её изменение, целесообразно дать обобщающую схему:

Усвоив, что работа – это один из способов изменения внутренней энергии, десятиклассники легко рассчитывают работу газа в изобарном процессе. На данном этапе необходимо подчеркнуть, что сила давления газа на всём пути не меняется, и по третьему закону Ньютона |F 2 | = |F 1 |, знак работы находим из формулы A = Fs cos. Если = 0°, то A > 0, если = 180°, то A < 0. На графике зависимости р (V ) работа численно равна площади под графиком.

Пусть газ расширяется или сжимается изотермически. Например, газ сжимается под поршнем, давление изменяется, и в любой момент времени

При бесконечно малом перемещении поршня на dl мы получим бесконечно малое изменение объёма dV , а давление р можно считать постоянным. По аналогии с нахождением механической работы переменной силы, составим простейшее дифференциальное соотношение dA = pdV , тогда и, зная зависимость р (V ), запишем Это табличный интеграл типа Работа газа в этом случае отрицательна, т.к. = 180°:

т.к. V 2 < V 1 .

Полученную формулу можно переписать, используя соотношение

Для закрепления решим задачи.

1. Газ переходит из состояния 1 (объём V 1 , давление р 1) в состояние 2 (объём V 2 , давление р 2) в процессе, при котором его давление зависит от объёма линейно. Найдите работу газа.

Решение. Построим примерный график зависимости p от V . Работа равна площади под графиком, т.е. площади трапеции:

2. Один моль воздуха, находящийся при нормальных условиях, расширяется от объёма V 0 до 2V 0 двумя способами – изотермически и изобарно. Сравните работу, совершённую воздухом в этих процессах.

Решение

При изобарном процессе A p = р 0 V , но р 0 = RT 0 /V 0 , V = V 0 , следовательно, A p = RT 0 .

При изотермическом процессе:

Сравним:

Изучив первый закон термодинамики и его применение к изопроцессам и закрепив решением задач тему о работе в термодинамике, учащиеся подготовились к восприятию наиболее сложной части термодинамики «Работа циклов и КПД тепловых машин». Этот материал я излагаю в следующей последовательности: работа циклов – цикл Карно – КПД тепловых машин – круговые процессы.

Круговым процессом (или циклом) называется термодинамический процесс, в результате которого тело, пройдя ряд состояний, возвращается в исходное состояние. Если все процессы в цикле равновесные, то цикл считается равновесным. Его можно изобразить графически в виде замкнутой кривой.

На рисунке показан график зависимости давления p от объёма V (диаграмма p , V ) для некоторого цикла 1–2–3–4–1. На участках 1–2 и 4–1 газ расширяется и совершает положительную работу А 1 , численно равную площади фигуры V 1 412V 2 . На участке 2–3–4 газ сжимается и совершает работу А 2 , модуль которой равен площади фигуры V 2 234V 1 . Полная работа газ за цикл А = А 1 + А 2 , т.е. положительна и равна площади фигуры 12341 .

Если равновесный цикл изображается замкнутой кривой на р , V -диаграмме, которая обходится по часовой стрелке, то работа тела положительна, а цикл накзывается прямым. Если замкнутая кривая на р , V -диаграмме обходится против часовой стрелки, то газ совершает отрицательную работу за цикл, а цикл называется обратным. В любом случае модуль работы газа за цикл равен площади фигуры, ограниченной графиком цикла на р , V -диаграмме.

В круговом процессе рабочее тело возвращается в исходное состояние, т.е. в состояние с первоначальной внутренней энергией. Это значит, что изменение внутренней энергии за цикл равно нулю: U = 0. Так как, по первому закону термодинамики, для всего цикла Q = U + A , то Q = A . Итак, алгебраическая сумма всех количеств теплоты, полученных за цикл, равна работе тела за цикл: A ц = Q н + Q х = Q н – |Q х |.

Рассмотрим один из круговых процессов – цикл Карно. Он состоит из двух изотермических и двух адиабатических процессов. Пусть рабочим телом является идеальный газ. Тогда на участке 1–2 изотермического расширения, согласно первому закону термодинамики, всё получаемое газом тепло идёт на совершение положительной работы: Q 12 = A 12 . То есть нет никаких потерь тепла в окружающее пространство и никакого изменения внутренней энергии: U = 0, т.к. T 12 = const (потому что газ – идеальный).

На участке 2–3 адиабатного расширения газ совершает положительную работу за счёт изменения внутренней энергии, т.к. Q ад = 0 = U 23 + A г23 A г23 = –U 23 . Здесь также нет потерь тепла, по определению адиабатного процесса.

На участке 3–4 над газом совершается положительная работа внешней силой, но он не нагревается (изотермический процесс). Благодаря достаточно медленно протекающему процессу и хорошему контакту с холодильником газ успевает отдавать получаемую за счёт работы энергию в виде тепла холодильнику. Сам же газ совершает при этом отрицательную работу: Q 34 = A г34 < 0.

На участке 4–1 газ адиабатно (без теплообмена) сжимается до исходного состояния. При этом он совершает отрицательную работу, а внешние силы – положительную: 0 = U 41 + A г41 A г41 = –U 41 .

Таким образом, за цикл газ получает тепло только на участке 1–2 , изотермически расширяясь:

Холодильнику тепло отдаётся только при изотермическом сжатии газа на участке 3–4 :

Согласно первому закону термодинамики

A ц = Q н – |Q x |;

КПД машины, работающей по циклу Карно, найдём по формуле

Согласно закону Бойля–Мариотта для процессов 1–2 и 3–4 , а также уравнению Пуассона для процессов 2–3 и 4–1 , легко доказать, что

После сокращений получим формулу КПД тепловой машины, работающей по циклу Карно:

Работу тепловых машин, работающих по обратному циклу, методически правильно, как показывает опыт, изучать на примере работы обратного цикла Карно, т.к. он обратим и его можно провести в обратном направлении: расширять газ при понижении температуры от T н до T x (процесс 1–4 ) и при низкой температуре T x (процесс 4–3 ), а затем сжимать (процессы 3–2 и 2–1 ). Теперь двигатель совершает работу, чтобы привести в действие холодильную машину. Рабочее тело отнимает количество теплоты Q x у продуктов внутри при низкой температуре T х, а отдаёт количество теплоты Q н окружающим телам, за пределами холодильника, при более высокой температуре T н. Таким образом, машина, работающая по обратному циклу Карно, уже не тепловая, а идеальная холодильная. Роль нагревателя (отдающего тепло) выполняет тело с более низкой температурой. Но, сохранив названия элементов, как в тепловой машине, работающей по прямому циклу, мы можем представить блок-схему холодильника в следующем виде:

Обратим внимание, что тепло от холодного тела переходит в холодильной машине к телу с более высокой температурой не самопроизвольно, а за счёт работы внешней силы.

Важнейшей характеристикой холодильника является холодильный коэффициент , определяющий эффективность работы холодильника и равный отношению количества теплоты, отнятого от холодильной камеры Q х к затраченной энергии внешнего источника

За один обратный цикл рабочее тело получает от холодильника количество теплоты Q х и отдаёт в окружающее пространство количество теплоты Q н, что больше Q х на работу A дв, совершаемую электродвигателем над газом за цикл: |Q н | = |Q х | + А дв.

Энергия, затраченная двигателем (электроэнергия в случае компрессорных электрических холодильников), идёт на полезную работу над газом, а также на потери при нагревании обмоток двигателя электрическим током Q R и на трение в схеме А тр.

Если пренебречь потерями на трение и джоулево тепло в обмотках двигателя, то холодильный коэффициент

Учитывая, что в прямом цикле

после несложных преобразований получим:

Последнее соотношение между холодильным коэффициентом и КПД тепловой машины, которая может работать и по обратному циклу, показывает, что холодильный коэффициент может быть больше единицы. В этом случае тепла отнимается от холодильной камеры и возвращается в комнату больше, чем для этого используется энергии двигателем.

В случае идеальной тепловой машины, работающей по обратному циклу Карно (идеального холодильника), холодильный коэффициент имеет максимальное значение:

В реальных холодильниках т.к. не вся получаемая двигателем энергия идёт на работу над рабочим телом, о чём написано выше.

Решим задачу:

Оцените стоимость изготовления 1 кг льда в домашнем холодильнике, если температура испарения фреона –t х °С, температура радиатора t н °С. Стоимость одного киловатт-часа электроэнергии равна Ц. Температура в комнате t .

Дано :

m , c , t , t н, t х, , Ц.
____________
Д – ?

Решение

Стоимость Д изготовления льда равна произведению работы электродвигателя на тариф Ц: Д = ЦА.

Для превращения воды в лёд с температурой 0 °С необходимо отвести от неё количество теплоты Q = m (ct + ). Считаем приближённо, что над фреоном совершается обратный цикл Карно с изотермами при температурах T н и T х. Используем формулы для холодильного коэффициента: по определению, = Q /A и для идеального холодильника ид = T х /(T н – T х). Из условия следует, что ид.

Решаем совместно три последних уравнения:

Разбирая с учащимися эту задачу, необходимо обратить внимание на то, что основная работа холодильного устройства идёт не на охлаждение продуктов, а на поддержание температуры внутри холодильного шкафа путём периодической откачки тепла, проникающего сквозь стенки холодильника.

Для закрепления темы можно решить задачу:

КПД тепловой машины, работающей по циклу, состоящему из изотермического процесса 1–2 , изохорического 2–3 и адиабатического 3–1 , равен , а разность максимальной и минимальной температур газа в цикле равна T . Найдите работу, совершённую моль одноатомного идеального газа в изотермическом процессе.

Решение

При решении задач, в которых фигурирует КПД цикла, полезно предварительно проанализировать все участки цикла, используя первый закон термодинамики, и выявить участки, где тело получает и отдаёт тепло. Проведём мысленно ряд изотерм на р , V -диаграмме. Тогда станет ясно, что максимальная температура в цикле на изотерме, а минимальная – в т. 3 . Обозначим их через T 1 и T 3 соответственно.

На участке 1–2 изменение внутренней энергии идеального газа U 2 – U 1 = 0. По первому закону термодинамики, Q 12 = (U 2 – U 1) + А 12 . Так как на участке 1–2 газ расширялся, то работа газа А 12 > 0. Значит, и подведённое к газу количество теплоты на этом участке Q 12 > 0, причём Q 12 = А 12 .

На участке 2–3 работа газа равна нулю. Поэтому Q 23 = U 3 – U 2 .

Воспользовавшись выражениями U 2 = c V T 1 и тем, что T 1 – T 3 = T , получим Q 23 = –c V T < 0. Это означает, что на участке 2–3 газ получает отрицательное количество теплоты, т.е. отдаёт тепло.

На участке 3–1 теплообмена нет, т.е. Q 31 = 0 и, по первому закону термодинамики, 0 = (U 1 – U 3) + A 31 . Тогда работа газа
A 31 = U 3 – U 1 = c V (T 3 –T 1) = –c V T .

Итак, за цикл газ совершил работу A 12 + А 31 = А 12 – c V T и получил тепло только на участке 1–2 . КПД цикла

Так как то работа газа на изотерме равна

Геннадий Антонович Белуха – заслуженный учитель РФ, педагогический стаж 20 лет, ежегодно его ученики занимают призовые места на различных этапах всероссийской олимпиады по физике. Хобби – компьютерная техника.

Работа в термодинамике

В термодинамике, в отличие от механики, рассматривается не движение тела как целого, а лишь относительное изменение частей термодинамической системы, в результате которого меняется ее объем.

Рассмотрим работу газа при изобарическом расширении.

Вычислим работу, совершаемую газом при его действии на поршень с силой ${F"}↖{→}$, равной по величине и противоположной по направлению силе ${F"}↖{→}$, действующей на газ со стороны поршня: ${F"}↖{→}=-{F"}↖{→}$ (согласно третьему закону Ньютона), $F"=pS$, где $p$ — давление газа, а $S$ — площадь поверхности поршня. Если перемещение поршня $∆h$ в результате расширения мало, то давление газа можно считать постоянным и работа газа равна:

$A"=F"∆h=pS∆h=p∆V$

Если газ расширяется, он совершает положительную работу, та к как перемещение поршня совпадает по направлению с силой ${F"}↖{→}$. Если газ сжимается, то работа газа отрицательна, поскольку перемещение поршня противоположно силе ${F"}↖{→}$. В формуле $A"=F"∆h=pS∆h=p∆V$ появится знак «минус»: $∆V

Работа внешних сил $А$, наоборот, положительна при сжатии газа и отрицательна при расширении:

Совершая над газом положительную работу, внешние тела передают ему часть своей энергии. При расширении газа внешние тела отбирают у газа часть его энергии — работа внешних сил отрицательна.

На графике зависимости давления от объема $р(V)$ работа определяется как площадь, ограниченная кривой $р(V)$, осью $V$ и отрезками $ab$ и $cd$, равными давлениям $р_1$ в начальном ($V_1$) и $р_2$ в конечном ($V_2$) состояниях, как для изобарного, так и для изотермического процессов.

Первый закон термодинамики

Первое начало (первый закон) термодинамики — это закон сохранения и превращения энергии для термодинамической системы.

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах — джоулях (как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Майером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Первый закон термодинамики формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

где $∆U$ — изменение внутренней энергии, $А$ — работа внешних сил, $Q$ — количество теплоты, переданной системе.

Из $∆U=A+Q$ следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, $A=0$ и $Q=0$,а следовательно, $∆U=0$.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение ($∆U=A+Q$) записывается в виде:

где $А"$ - работа, совершаемая системой ($А"=-А$).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника, т. е. только за счет внутренней энергии.

Действительно, если к телу не поступает теплота ($Q=0$), то работа $А"$, согласно уравнению $Q=∆U+A"$, совершается только за счет убыли внутренней энергии $A"=-∆U$. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа, так и количество теплоты являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам.

Изохорный процесс. Зависимость $р(Т)$ на термодинамической диаграмме изображается изохорой.

Изохорный (изохорический) процесс — термодинмический процесс, происходящий в системе при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется ($∆V=0$), и, согласно первому началу термодинамики $Q=∆U+A"$,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа ($A=p∆V=0$) газом не совершается.

Если газ нагревается, то $Q > 0$ и $∆U > 0$, его внутренняя энергия увеличивается. При охлаждении газа $Q

Изотермический процесс графически изображается изотермой.

Изотермический процесс — это термодинамический процесс, происходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется ($T=const$), то все переданное газу количество теплоты идет на совершение работы:

При получении газом теплоты ($Q > 0$) он совершает положительную работу ($А" > 0$). Если газ отдает тепло окружающей среде, $Q

Изобарный процесс на термодинамической диаграмме изображается изобарой .

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением $p$.

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе согласно формуле $Q=∆U+A"$ передаваемое газу количество теплоты идет на изменение его внутренней энергии $∆U$ и на совершение им работы $A"$ при постоянном давлении:

Работа идеального газа определяется по графику зависимости $p(V)$ для изобарного процесса ($A"=p∆V$).

Для идеального газа при изобарном процессе объем пропорционален температуре, в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой ($Q=0$).

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия и может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики ($∆U=A+Q$), в адиабатной системе

где $А$ - работа внешних сил.

При адиабатном расширении газа $А

Следовательно,

$∆U={i}/{2}·{m}/{M}R∆T

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что давление газа уменьшается более резко, чем при изотермическом процессе.

На рисунке адиабата $1—2$, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема $V_1$ до $V_2$.

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Принцип действия тепловых двигателей

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно второму началу термодинамики, тепловой двигатель может непрерывно совершать периодически повторяющуюся механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего тела (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

  1. рабочее тело (газ или пар), совершающее работу;
  2. нагреватель, сообщающий энергию рабочему телу;
  3. холодильник, поглощающий часть энергии от рабочего тела.

Коэффициент полезного действия теплового двигателя

Согласно закону сохранения энергии, работа, совершаемая двигателем, равна:

$A"=|Q_1|-|Q_2|$

где $Q_1$ — количество теплоты, полученное от нагревателя, $Q_2$ — количество теплоты, отданное холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называется отношение работы $А"$, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

$η={A"}/{|Q_1|}={|Q_1|-|Q_2|}/{|Q_1|}=1-{|Q_2|}/{|Q_1|}$

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то $η

КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При $T_1 - T_2=0$ двигатель не может работать.

Цикл Карно

Цикл Карно — это круговой обратимый процесс, состоящий из двух изотермических и двух адиабатических процессов.

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД $< 5%$)и поиски путей их усовершенствования.

Выбор двух изотермических и двух адиабатических процессов был обусловлен тем, что работа газа при изотермическом расширении совершается за счет внутренней энергии нагревателя, а при адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле исключен контакт тел с разной температурой, следовательно, исключена теплопередача без совершения работы.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процессы цикла. В процессе изотермического расширения ($1-2$) при температуре $Т_1$ работа совершается за счет изменения внутренней энергии нагревателя, т. е. за счет подведения к газу количества теплоты $Q_1$:

$A_{12}=Q_1.$ Охлаждение газа перед сжатием ($3-4$) происходит при адиабатном расширении ($2-3$). Изменение внутренней энергии $∆U_{23}$ при адиабатном процессе ($Q=0$) полностью преобразуется в механическую работу:

$A_{23}=-∆U_{23}$

Температура газа в результате адиабатического расширения ($2-3$) понижается до температуры холодильника $Т_2

Цикл завершается процессом адиабатического сжатия ($4—1$), при котором газ нагревается до температуры $Т_1$.

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

$η={T_1-T_2}/{T_1}=1-{T_2}/{T_1}$

Суть формулы $η={T_1-T_2}/{T_1}=1-{T_2}/{T_1}$ выражена в доказанной С. Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

>>Физика: Работа в термодинамике

В результате каких процессов может меняться внутренняя энергия? Вы уже знаете, что есть два вида таких процессов: совершение работы и теплопередача. Начнем с работы. Чему она равна при сжатии и расширении газа и других тел?
Работа в механике и термодинамике. В механике работа определяется как произведение модуля силы, модуля перемещения точки ее приложения и косинуса угла между ними. При действии силы на движущееся тело работа равна изменению его кинетической энергии.
В движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела друг относительно друга. В результате может меняться объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но она равна не изменению кинетической энергии тела, а изменению его внутренней энергии.
Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении тела меняется его внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?
Причина изменения температуры газа в процессе его сжатия состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия . Так, при движении навстречу молекулам газа поршень во время столкновений передает им часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги. Нога сообщает мячу скорость, значительно большую той, которой он обладал до удара.
И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует и футболист, для того чтобы уменьшить скорость летящего мяча или остановить его, - нога футболиста движется от мяча, как бы уступая ему дорогу.
При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.
Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис.13.1 ).

Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сила давления газа, действуя на поршень с силой . Согласно третьему закону Ньютона . Модуль силы, действующей со стороны газа на поршень, равен , где p - давление газа, а S - площадь поверхности поршня. Пусть газ расширяется изобарно и поршень смещается в направлении силы на малое расстояние . Так как давление газа постоянно, то работа газа равна:

Эту работу можно выразить через изменение объема газа. Начальный его объем V 1 =Sh 1 , а конечный V 2 =Sh 2 . Поэтому

где - изменение объема газа.
При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают.
Если газ сжимается, то формула (13.3) для работы газа остается справедливой. Но теперь , и поэтому (рис.13.2 ).

Работа A , совершаемая внешними телами над газом, отличается от работы самого газа A ´ только знаком: , так как сила , действующая на газ, направлена против силы а перемещение поршня остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

При сжатии газа, когда , работа внешней силы оказывается положительной. Так и должно быть: при сжатии газа направления силы и перемещения точки ее приложения совпадают.
Если давление не поддерживать постоянным, то при расширении газ теряет энергию и передает ее окружающим телам: поднимающемуся поршню, воздуху и т. д. Газ при этом охлаждается. При сжатии газа, наоборот, внешние тела передают ему энергию и газ нагревается.
Геометрическое истолкование работы. Работе газа для случая постоянного давления можно дать простое геометрическое истолкование.
Построим график зависимости давления газа от занимаемого им объема (рис.13.3 ). Здесь площадь прямоугольника abdc , ограниченная графиком p 1 =const, осью V и отрезками ab и cd , равными давлению газа, численно равна работе (13.3):

В общем случае давление газа не остается неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис.13.4 ). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части и вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему численно равна площади фигуры, ограниченной графиком зависимости p от V , осью V и отрезками ab и cd , равными давлениям p 1 , p 2 в начальном и конечном состояниях газа.

???
1. Почему газы при сжатии нагреваются?
2. Положительную или отрицательную работу совершают внешние силы при изотермическом процессе, изображенном на рисунке 13.2?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Приложение нагрузки к любому сооружению вызывает его деформацию. При этом части сооружения выходят из состояния покоя, приобретают некоторые скорости и ускорения. Если нагрузка возрастает медленно, то эти ускорения невелики, а потому можно пренебречь силами инерции, развивающимися в процессе перехода системы в деформированное состояние. Такое плавное (постепенное) приложение нагрузки называется статическим.

Определим работу внешней нагрузки, например силы Р, статически приложенной к некоторой упругой системе (рис. 1.11), материал которой удовлетворяет закону Гука.

При малых деформациях к этой системе применим принцип независимости действия сил, и, следовательно, перемещения отдельных точек и сечений конструкции прямо пропорциональны величине вызывающей их нагрузки. В общем виде эту зависимость можно выразить равенством

Здесь А - перемещение по направлению действия силы Р; а - некоторый коэффициент, зависящий от материала, схемы и размеров сооружения.

Увеличим силу Р на бесконечно малую величину Это приращение вызовет возрастание перемещения на величину

Составим выражение элементарной работы внешней силы на перемещении отбрасывая при этом бесконечно малые величины второго порядка малости:

Заменяем значение на основании формулы (1.11) выражением

Интегрируя это выражение в пределах полного изменения силы от нуля до ее конечного значения, получаем формулу для определения работы, совершенной статически приложенной внешней силой Р:

Так как то полученную формулу можно представить в виде

В общем случае направление силы Р может не совпадать с направлением вызванного ею перемещения. Так как величина работы определяется произведением силы на путь, пройденный по направлению этой силы, то под величиной А надо понимать проекцию действительного (полного) перемещения точки приложения силы на направление силы. Например, при действии силы Р под углом к горизонтальной оси (рис. 2.11) перемещение А измеряется отрезком (представляющим собой проекцию действительного перемещения на направление силы Р).

В случае, когда к системе приложена пара сил с моментом ЗК (сосредоточенный момент), выражение работы можно получить аналогичным образом. При этом необходимо выбрать соответствующий сосредоточенному моменту вид перемещения; это будет угол поворота того поперечного сечения бруса, к которому приложен момент.

Например, работа момента, статически приложенного к балке, изображенной на рис. 3.11,

где О - угол поворота (в радианах) того сечения балки, к которому приложен момент Ш.

Итак, работа внешней силы при статическом действии ее на любое упругое сооружение равна половине произведения значения этой силы на величину соответствующего ей перемещения.

Для обобщения полученного вывода под силой понимаем любое воздействие, приложенное к упругой системе, т. е. не только сосредоточенную силу, но и момент, равномерно распределенную нагрузку и т. п.; под перемещением понимаем тот вид перемещения, на котором данная сила производит работу. Сосредоточенной силе Р соответствует линейное перемещение, моменту - угловое, а равномерно распределенной нагрузке - площадь эпюры перемещений на участке действия нагрузки.

При статическом действии на сооружение группы внешних сил работа этих сил равна половине суммы произведений каждой силы на величину соответствующего ей перемещения, вызванного действием всей группы сил.

Так, например, при действии на балку, изображенную на рис. 4.11, сосредоточенных сил и сосредоточенных моментов работа внешних сил

Знак минус перед последним членом выражения принят потому, что направление угла поворота поперечного сечения балки, в котором приложен момент противоположно направлению этого момента.

Работу внешних сил на вызванных ими перемещениях можно выразить и иначе, а именно: через изгибающие моменты, продольные и поперечные силы, возникающие в поперечных сечениях стержней конструкции.

Выделим из прямолинейного стержня двумя сечениями, перпендикулярными его оси (рис. 5.11), бесконечно малый элемент длиной (элемент ). Стержень состоит из бесконечно большого числа таких элементов. К элементу в общем случае плоской задачи приложены продольная сила N, изгибающий момент М и поперечная сила

Усилия N, М, Q являются внутренними, усилиями по отношению к целому стержню. Однако для выделенного элемента они являются внешними силами, а потому работу А можно получить как сумму работ, совершенных статически возрастающими усилиями N, М, Q на соответствующих деформациях элементов Рассмотрим отдельно влияние каждого из этих усилий на элемент

Элемент находящийся под действием только продольных сил N, изображен на рис. 6.11. Если левое его сечение считать неподвижным, то правое сечение под влиянием продольной силы переместится вправо на величину На этом перемещении статически возрастающая сила N совершит работу

Элемент находящийся под действием только изгибающих моментов М, изображен на рис. 7.11.

Если левое его сечение не подвижно закрепить, то взаимный угол поворота торцовых сечений элемента будет равен углу поворота До его правого сечения [см. формулу (16.7) и рис. 33.7]:

На этом угловом перемещении статически возрастающий момент М совершит работу

Элемент находящийся под действием только поперечных сил Q, изображен на рис. 8.11, а. Закрепив левое его сечение (рис. 8.11, б), приложим к правому касательные усилия равнодействующей которых является поперечная сила

Предположим, что касательные напряжения равномерно распределены по всей площади F поперечного сечения, т. е. тогда перемещение (рис. 8.11,б), вызванное действием поперечной силы Q, представляющее собой сдвиг торцовых сечений элемента друг относительно друга, на основании формулы (3.4) определится из выражения

а работа статически возрастающей силы Q на этом перемещении

Определим работу силы F, статически приложенной к некоторой упругой системе (рис.20, а), материал которой следует закону Гука.

При малых деформациях к этой системе применим принцип независимости действия сил, следовательно, перемещения отдельных точек и сечений конструкции прямо пропорциональны вызывающей их нагрузке:

где - перемещение по направлению силы F; - некоторый коэффициент, зависящий от материала, схемы и размеров сооружения. Увеличение силы F на бесконечно малую величину dF вызовет увеличение перемещения на .

Составим выражение элементарной работы внешней силы на перемещении , отбрасывая при этом бесконечно малые величины второго порядка малости: .

Заменим , используя (2.2):

Интегрируя это выражение в пределах полного изменения силы от нуля до ее конечного значения, получим формулу для определения работы, совершаемой статически приложенной внешней силой F:

или, с учетом(2.2):

то есть работа внешней силы при статическом действии ее на любое упругое сооружение равна половине произведения значения этой силы на величину соответствующего ей перемещения.

Для обобщения полученного вывода под силой понимают любое воздействие, приложенное к упругой системе, то есть не только сосредоточенную силу, но и момент или равномерно распределенную нагрузку; под перемещением понимают тот его вид, на котором данная сила производит работу: сосредоточенной силе соответствует линейное перемещение, сосредоточенному моменту – угловое, равномерно распределенной нагрузке – площадь эпюры перемещений на участке действия нагрузки.

При статическим действии на конструкцию группы внешних сил работа этих сил равна половине суммы произведений каждой силы на величину соответствующего ей перемещения, вызванного действием всей группы сил. Например, при действии на балку (рис.20,б) сосредоточенных сил F 1 , F 2 и сосредоточенных моментов М 1 и М 2 работа внешних сил:

Работу внешних сил на вызванных ими перемещения можно выразить и иначе – через внутренние силовые факторы (изгибающие моменты, продольные и поперечные силы), возникающие в поперечных сечениях системы.

Выделим из прямолинейного стержня двумя сечениями, перпендикулярными его оси (рис.21, а), бесконечно малый элемент dz.

Стержень состоит из бесконечно большого числа таких элементов. К каждому элементу dz в общем случае плоской задачи приложены продольная сила N z , изгибающий момент М х и поперечная сила Q y .

Для выделенного элемента dz усилия N, M, Q являются внешними силами, поэтому работу можно получить как сумму работ, совершенных статически возрастающими усилиями N, M, Q на соответствующих деформациях элементов dz.


Рассмотрим элемент dz, находящийся только под действием продольных сил N (рис.21,б). Если его левое сечение считать неподвижным, то правое сечение под влиянием продольной силы переместится вправо на величину . На этом перемещении сила N совершит работу:

Если неподвижно закрепить левое сечение элемента dz, находящегося под действием только изгибающих моментов М (рис.22,а), то взаимный угол поворота торцевых сечений элемента будет равен углу поворота его правого сечения:

На этом перемещении момент М совершит работу:

Закрепим левое сечение элемента dz, находящегося под действием только поперечных сил Q (рис.22,б,в), а к правому приложим касательные усилия , равнодействующей которых является поперечная сила Q. Предположим, что касательные напряжения равномерно распределены по всей площади А поперечного сечения, то есть , тогда перемещение определяется в виде: .